Network Working Group                                        D. EastLake
Request for Comments: 2536                                           IBM
Category: Standards Track                                     March 1999
        
Network Working Group                                        D. EastLake
Request for Comments: 2536                                           IBM
Category: Standards Track                                     March 1999
        

DSA KEYs and SIGs in the Domain Name System (DNS)

域名系统(DNS)中的DSA密钥和SIG

Status of this Memo

本备忘录的状况

This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.

本文件规定了互联网社区的互联网标准跟踪协议,并要求进行讨论和提出改进建议。有关本协议的标准化状态和状态,请参考当前版本的“互联网官方协议标准”(STD 1)。本备忘录的分发不受限制。

Copyright Notice

版权公告

Copyright (C) The Internet Society (1999). All Rights Reserved.

版权所有(C)互联网协会(1999年)。版权所有。

Abstract

摘要

A standard method for storing US Government Digital Signature Algorithm keys and signatures in the Domain Name System is described which utilizes DNS KEY and SIG resource records.

描述了一种利用DNS密钥和SIG资源记录在域名系统中存储美国政府数字签名算法密钥和签名的标准方法。

Table of Contents

目录

   Abstract...................................................1
   1. Introduction............................................1
   2. DSA KEY Resource Records................................2
   3. DSA SIG Resource Records................................3
   4. Performance Considerations..............................3
   5. Security Considerations.................................4
   6. IANA Considerations.....................................4
   References.................................................5
   Author's Address...........................................5
   Full Copyright Statement...................................6
        
   Abstract...................................................1
   1. Introduction............................................1
   2. DSA KEY Resource Records................................2
   3. DSA SIG Resource Records................................3
   4. Performance Considerations..............................3
   5. Security Considerations.................................4
   6. IANA Considerations.....................................4
   References.................................................5
   Author's Address...........................................5
   Full Copyright Statement...................................6
        
1. Introduction
1. 介绍

The Domain Name System (DNS) is the global hierarchical replicated distributed database system for Internet addressing, mail proxy, and other information. The DNS has been extended to include digital signatures and cryptographic keys as described in [RFC 2535]. Thus the DNS can now be secured and can be used for secure key distribution.

域名系统(DNS)是用于Internet寻址、邮件代理和其他信息的全局分层复制分布式数据库系统。DNS已扩展为包括[RFC 2535]中所述的数字签名和加密密钥。因此,DNS现在可以得到保护,并可用于安全密钥分发。

This document describes how to store US Government Digital Signature Algorithm (DSA) keys and signatures in the DNS. Familiarity with the US Digital Signature Algorithm is assumed [Schneier]. Implementation of DSA is mandatory for DNS security.

本文档介绍如何在DNS中存储美国政府数字签名算法(DSA)密钥和签名。假设熟悉美国数字签名算法[Schneier]。为了DNS安全,必须实现DSA。

2. DSA KEY Resource Records
2. DSA关键资源记录

DSA public keys are stored in the DNS as KEY RRs using algorithm number 3 [RFC 2535]. The structure of the algorithm specific portion of the RDATA part of this RR is as shown below. These fields, from Q through Y are the "public key" part of the DSA KEY RR.

DSA公钥使用算法编号3[RFC 2535]作为密钥RRs存储在DNS中。该RR的RDATA部分的算法特定部分的结构如下所示。从Q到Y的这些字段是DSA密钥RR的“公钥”部分。

The period of key validity is not in the KEY RR but is indicated by the SIG RR(s) which signs and authenticates the KEY RR(s) at that domain name.

密钥有效期不在密钥RR中,而是由SIG RR指示,SIG RR在该域名处对密钥RR进行签名和认证。

           Field     Size
           -----     ----
            T         1  octet
            Q        20  octets
            P        64 + T*8  octets
            G        64 + T*8  octets
            Y        64 + T*8  octets
        
           Field     Size
           -----     ----
            T         1  octet
            Q        20  octets
            P        64 + T*8  octets
            G        64 + T*8  octets
            Y        64 + T*8  octets
        

As described in [FIPS 186] and [Schneier]: T is a key size parameter chosen such that 0 <= T <= 8. (The meaning for algorithm 3 if the T octet is greater than 8 is reserved and the remainder of the RDATA portion may have a different format in that case.) Q is a prime number selected at key generation time such that 2**159 < Q < 2**160 so Q is always 20 octets long and, as with all other fields, is stored in "big-endian" network order. P, G, and Y are calculated as directed by the FIPS 186 key generation algorithm [Schneier]. P is in the range 2**(511+64T) < P < 2**(512+64T) and so is 64 + 8*T octets long. G and Y are quantities modulus P and so can be up to the same length as P and are allocated fixed size fields with the same number of octets as P.

如[FIPS 186]和[Schneier]所述,T是一个关键尺寸参数,其选择应确保0<=T<=8。(如果T八位组大于8,则保留算法3的含义,在这种情况下,剩余的RDATA部分可能具有不同的格式。)Q是在密钥生成时选择的素数,因此2**159<Q<2**160,因此Q始终为20个八位组长,并且与所有其他字段一样,以“大端”网络顺序存储。P、 根据FIPS 186密钥生成算法[Schneier]的指示计算G和Y。P在2**(511+64T)<P<2**(512+64T)的范围内,因此64+8*T八位元长。G和Y是模P的数量,因此可以达到与P相同的长度,并且被分配为具有与P相同八位字节数的固定大小字段。

During the key generation process, a random number X must be generated such that 1 <= X <= Q-1. X is the private key and is used in the final step of public key generation where Y is computed as

在密钥生成过程中,必须生成一个随机数X,使得1<=X<=Q-1。X是私钥,在公钥生成的最后一步中使用,其中Y计算为

             Y = G**X mod P
        
             Y = G**X mod P
        
3. DSA SIG Resource Records
3. DSA SIG资源记录

The signature portion of the SIG RR RDATA area, when using the US Digital Signature Algorithm, is shown below with fields in the order they occur. See [RFC 2535] for fields in the SIG RR RDATA which precede the signature itself.

使用美国数字签名算法时,SIG RR RDATA区域的签名部分如下所示,字段按出现顺序排列。请参阅[RFC 2535],了解签名前的SIG RR RDATA中的字段。

           Field     Size
           -----     ----
            T         1 octet
            R        20 octets
            S        20 octets
        
           Field     Size
           -----     ----
            T         1 octet
            R        20 octets
            S        20 octets
        

The data signed is determined as specified in [RFC 2535]. Then the following steps are taken, as specified in [FIPS 186], where Q, P, G, and Y are as specified in the public key [Schneier]:

签名的数据按照[RFC 2535]中的规定确定。然后按照[FIPS 186]中的规定采取以下步骤,其中Q、P、G和Y如公钥[Schneier]中的规定:

hash = SHA-1 ( data )

散列=SHA-1(数据)

Generate a random K such that 0 < K < Q.

生成一个随机K,使得0<K<Q。

           R = ( G**K mod P ) mod Q
        
           R = ( G**K mod P ) mod Q
        
           S = ( K**(-1) * (hash + X*R) ) mod Q
        
           S = ( K**(-1) * (hash + X*R) ) mod Q
        

Since Q is 160 bits long, R and S can not be larger than 20 octets, which is the space allocated.

由于Q是160位长,R和S不能大于20个八位字节,这是分配的空间。

T is copied from the public key. It is not logically necessary in the SIG but is present so that values of T > 8 can more conveniently be used as an escape for extended versions of DSA or other algorithms as later specified.

T是从公钥复制的。在SIG中,它在逻辑上不是必需的,但它的存在使得T>8的值可以更方便地用作扩展版本DSA或稍后指定的其他算法的转义。

4. Performance Considerations
4. 性能注意事项

General signature generation speeds are roughly the same for RSA [RFC 2537] and DSA. With sufficient pre-computation, signature generation with DSA is faster than RSA. Key generation is also faster for DSA. However, signature verification is an order of magnitude slower than RSA when the RSA public exponent is chosen to be small as is recommended for KEY RRs used in domain name system (DNS) data authentication.

RSA[RFC 2537]和DSA的一般签名生成速度大致相同。通过充分的预计算,DSA生成签名的速度比RSA快。DSA的密钥生成速度也更快。但是,当RSA公共指数选择为较小时,签名验证比RSA慢一个数量级,这是域名系统(DNS)数据认证中使用的密钥RRs的建议。

Current DNS implementations are optimized for small transfers, typically less than 512 bytes including overhead. While larger transfers will perform correctly and work is underway to make larger transfers more efficient, it is still advisable at this time to make reasonable efforts to minimize the size of KEY RR sets stored within

当前的DNS实现针对小型传输进行了优化,包括开销在内,通常小于512字节。虽然更大的传输将正确执行,并且正在努力使更大的传输更有效,但此时仍建议尽合理的努力最小化存储在其中的密钥RR集的大小

the DNS consistent with adequate security. Keep in mind that in a secure zone, at least one authenticating SIG RR will also be returned.

DNS与足够的安全性保持一致。请记住,在安全区域中,还将返回至少一个身份验证SIG RR。

5. Security Considerations
5. 安全考虑

Many of the general security consideration in [RFC 2535] apply. Keys retrieved from the DNS should not be trusted unless (1) they have been securely obtained from a secure resolver or independently verified by the user and (2) this secure resolver and secure obtainment or independent verification conform to security policies acceptable to the user. As with all cryptographic algorithms, evaluating the necessary strength of the key is essential and dependent on local policy.

[RFC 2535]中的许多一般安全考虑适用。不应信任从DNS检索的密钥,除非(1)它们已从安全解析程序安全获取或由用户独立验证;(2)此安全解析程序和安全获取或独立验证符合用户可接受的安全策略。与所有密码算法一样,评估密钥的必要强度至关重要,并且取决于本地策略。

The key size limitation of a maximum of 1024 bits ( T = 8 ) in the current DSA standard may limit the security of DSA. For particularly critical applications, implementors are encouraged to consider the range of available algorithms and key sizes.

当前DSA标准中最大1024位(T=8)的密钥大小限制可能会限制DSA的安全性。对于特别关键的应用程序,鼓励执行者考虑可用算法和密钥大小的范围。

DSA assumes the ability to frequently generate high quality random numbers. See [RFC 1750] for guidance. DSA is designed so that if manipulated rather than random numbers are used, very high bandwidth covert channels are possible. See [Schneier] and more recent research. The leakage of an entire DSA private key in only two DSA signatures has been demonstrated. DSA provides security only if trusted implementations, including trusted random number generation, are used.

DSA假设能够频繁生成高质量的随机数。请参见[RFC 1750]以获取指导。DSA的设计目的是,如果使用操纵而不是随机数,则可以使用非常高的带宽隐蔽通道。参见[Schneier]和最近的研究。已经证明,只有两个DSA签名泄漏了整个DSA私钥。DSA仅在使用可信实现(包括可信随机数生成)时提供安全性。

6. IANA Considerations
6. IANA考虑

Allocation of meaning to values of the T parameter that are not defined herein requires an IETF standards actions. It is intended that values unallocated herein be used to cover future extensions of the DSS standard.

本文未定义的T参数值的意义分配需要IETF标准行动。本文中未分配的值用于涵盖DSS标准的未来扩展。

References

工具书类

[FIPS 186] U.S. Federal Information Processing Standard: Digital Signature Standard.

[FIPS 186]美国联邦信息处理标准:数字签名标准。

[RFC 1034] Mockapetris, P., "Domain Names - Concepts and Facilities", STD 13, RFC 1034, November 1987.

[RFC 1034]Mockapetris,P.,“域名-概念和设施”,STD 13,RFC 1034,1987年11月。

[RFC 1035] Mockapetris, P., "Domain Names - Implementation and Specification", STD 13, RFC 1035, November 1987.

[RFC 1035]Mockapetris,P.,“域名-实现和规范”,STD 13,RFC 1035,1987年11月。

[RFC 1750] Eastlake, D., Crocker, S. and J. Schiller, "Randomness Recommendations for Security", RFC 1750, December 1994.

[RFC 1750]Eastlake,D.,Crocker,S.和J.Schiller,“安全性的随机性建议”,RFC 1750,1994年12月。

[RFC 2535] Eastlake, D., "Domain Name System Security Extensions", RFC 2535, March 1999.

[RFC 2535]Eastlake,D.,“域名系统安全扩展”,RFC 25351999年3月。

[RFC 2537] Eastlake, D., "RSA/MD5 KEYs and SIGs in the Domain Name System (DNS)", RFC 2537, March 1999.

[RFC 2537]Eastlake,D.,“域名系统(DNS)中的RSA/MD5密钥和SIG”,RFC 2537,1999年3月。

[Schneier] Schneier, B., "Applied Cryptography Second Edition: protocols, algorithms, and source code in C", 1996.

[Schneier]Schneier,B.,“应用密码学第二版:C语言中的协议、算法和源代码”,1996年。

Author's Address

作者地址

Donald E. Eastlake 3rd IBM 65 Shindegan Hill Road, RR #1 Carmel, NY 10512

纽约州卡梅尔市新德干山路65号东湖第三IBM公司,邮编10512

   Phone:   +1-914-276-2668(h)
            +1-914-784-7913(w)
   Fax:     +1-914-784-3833(w)
   EMail:   dee3@us.ibm.com
        
   Phone:   +1-914-276-2668(h)
            +1-914-784-7913(w)
   Fax:     +1-914-784-3833(w)
   EMail:   dee3@us.ibm.com
        

Full Copyright Statement

完整版权声明

Copyright (C) The Internet Society (1999). All Rights Reserved.

版权所有(C)互联网协会(1999年)。版权所有。

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English.

本文件及其译本可复制并提供给他人,对其进行评论或解释或协助其实施的衍生作品可全部或部分编制、复制、出版和分发,不受任何限制,前提是上述版权声明和本段包含在所有此类副本和衍生作品中。但是,不得以任何方式修改本文件本身,例如删除版权通知或对互联网协会或其他互联网组织的引用,除非出于制定互联网标准的需要,在这种情况下,必须遵循互联网标准过程中定义的版权程序,或根据需要将其翻译成英语以外的其他语言。

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns.

上述授予的有限许可是永久性的,互联网协会或其继承人或受让人不会撤销。

This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

本文件和其中包含的信息是按“原样”提供的,互联网协会和互联网工程任务组否认所有明示或暗示的保证,包括但不限于任何保证,即使用本文中的信息不会侵犯任何权利,或对适销性或特定用途适用性的任何默示保证。