Network Working Group                                        D. Eastlake
Request for Comments: 3075                                      Motorola
Category: Standards Track                                      J. Reagle
                                                                 W3C/MIT
                                                                 D. Solo
                                                               Citigroup
                                                              March 2001
        
Network Working Group                                        D. Eastlake
Request for Comments: 3075                                      Motorola
Category: Standards Track                                      J. Reagle
                                                                 W3C/MIT
                                                                 D. Solo
                                                               Citigroup
                                                              March 2001
        

XML-Signature Syntax and Processing

XML签名语法与处理

Status of this Memo

本备忘录的状况

This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.

本文件规定了互联网社区的互联网标准跟踪协议,并要求进行讨论和提出改进建议。有关本协议的标准化状态和状态,请参考当前版本的“互联网官方协议标准”(STD 1)。本备忘录的分发不受限制。

Copyright Notice

版权公告

Copyright (c) 2001 The Internet Society & W3C (MIT, INRIA, Keio), All Rights Reserved.

版权所有(c)2001互联网协会和W3C(麻省理工学院、印度理工学院、庆应社),保留所有权利。

Abstract

摘要

This document specifies XML (Extensible Markup Language) digital signature processing rules and syntax. XML Signatures provide integrity, message authentication, and/or signer authentication services for data of any type, whether located within the XML that includes the signature or elsewhere.

本文档指定了XML(可扩展标记语言)数字签名处理规则和语法。XML签名为任何类型的数据提供完整性、消息身份验证和/或签名者身份验证服务,无论是位于包含签名的XML内还是其他地方。

Table of Contents

目录

   1.  Introduction ................................................  3
         1. Editorial Conventions ..................................  3
         2. Design Philosophy ......................................  4
         3. Versions, Namespaces and Identifiers ...................  4
         4. Acknowledgements .......................................  5
   2.  Signature Overview and Examples .............................  6
         1. Simple Example (Signature, SignedInfo, Methods, and
            References) ............................................  7
              1. More on Reference .................................  9
         2. Extended Example (Object and SignatureProperty) ........ 10
         3. Extended Example (Object and Manifest) ................. 11
   3.  Processing Rules ............................................ 13
         1. Core Generation .... ................................... 13
              1. Reference Generation .............................. 13
              2. Signature Generation .............................. 13
        
   1.  Introduction ................................................  3
         1. Editorial Conventions ..................................  3
         2. Design Philosophy ......................................  4
         3. Versions, Namespaces and Identifiers ...................  4
         4. Acknowledgements .......................................  5
   2.  Signature Overview and Examples .............................  6
         1. Simple Example (Signature, SignedInfo, Methods, and
            References) ............................................  7
              1. More on Reference .................................  9
         2. Extended Example (Object and SignatureProperty) ........ 10
         3. Extended Example (Object and Manifest) ................. 11
   3.  Processing Rules ............................................ 13
         1. Core Generation .... ................................... 13
              1. Reference Generation .............................. 13
              2. Signature Generation .............................. 13
        
         2. Core Validation ........................................ 13
              1. Reference Validation .............................. 14
              2. Signature Validation .............................. 14
   4.  Core Signature Syntax ....................................... 14
         1. The Signature element .................................. 15
         2. The SignatureValue Element ............................. 16
         3. The SignedInfo Element ................................. 16
              1. The CanonicalizationMethod Element ................ 17
              2. The SignatureMethod Element ....................... 18
              3. The Reference Element ............................. 19
                   1. The URI Attribute ............................ 19
                   2. The Reference Processing Model ............... 21
                   3. Same-Document URI-References ................. 23
                   4. The Transforms Element ....................... 24
                   5. The DigestMethod Element ..................... 25
                   6. The DigestValue Element ...................... 26
         4. The KeyInfo Element .................................... 26
              1. The KeyName Element ............................... 27
              2. The KeyValue Element .............................. 28
              3. The RetrievalMethod Element ....................... 28
              4. The X509Data Element .............................. 29
              5. The PGPData Element ............................... 31
              6. The SPKIData Element .............................. 32
              7. The MgmtData Element .............................. 32
         5. The Object Element ..................................... 33
   5.  Additional Signature Syntax ................................. 34
         1. The Manifest Element ................................... 34
         2. The SignatureProperties Element ........................ 35
         3. Processing Instructions ................................ 36
         4. Comments in dsig Elements .............................. 36
   6.  Algorithms .................................................. 36
         1. Algorithm Identifiers and Implementation Requirements .. 36
         2. Message Digests ........................................ 38
              1. SHA-1 ............................................. 38
         3. Message Authentication Codes ........................... 38
              1. HMAC .............................................. 38
         4. Signature Algorithms ................................... 39
              1. DSA ............................................... 39
              2. PKCS1 ............................................. 40
         5. Canonicalization Algorithms ............................ 42
              1. Minimal Canonicalization .......................... 43
              2. Canonical XML ..................................... 43
         6. Transform Algorithms ................................... 44
              1. Canonicalization .................................. 44
              2. Base64 ............................................ 44
              3. XPath Filtering ................................... 45
              4. Enveloped Signature Transform ..................... 48
              5. XSLT Transform .................................... 48
        
         2. Core Validation ........................................ 13
              1. Reference Validation .............................. 14
              2. Signature Validation .............................. 14
   4.  Core Signature Syntax ....................................... 14
         1. The Signature element .................................. 15
         2. The SignatureValue Element ............................. 16
         3. The SignedInfo Element ................................. 16
              1. The CanonicalizationMethod Element ................ 17
              2. The SignatureMethod Element ....................... 18
              3. The Reference Element ............................. 19
                   1. The URI Attribute ............................ 19
                   2. The Reference Processing Model ............... 21
                   3. Same-Document URI-References ................. 23
                   4. The Transforms Element ....................... 24
                   5. The DigestMethod Element ..................... 25
                   6. The DigestValue Element ...................... 26
         4. The KeyInfo Element .................................... 26
              1. The KeyName Element ............................... 27
              2. The KeyValue Element .............................. 28
              3. The RetrievalMethod Element ....................... 28
              4. The X509Data Element .............................. 29
              5. The PGPData Element ............................... 31
              6. The SPKIData Element .............................. 32
              7. The MgmtData Element .............................. 32
         5. The Object Element ..................................... 33
   5.  Additional Signature Syntax ................................. 34
         1. The Manifest Element ................................... 34
         2. The SignatureProperties Element ........................ 35
         3. Processing Instructions ................................ 36
         4. Comments in dsig Elements .............................. 36
   6.  Algorithms .................................................. 36
         1. Algorithm Identifiers and Implementation Requirements .. 36
         2. Message Digests ........................................ 38
              1. SHA-1 ............................................. 38
         3. Message Authentication Codes ........................... 38
              1. HMAC .............................................. 38
         4. Signature Algorithms ................................... 39
              1. DSA ............................................... 39
              2. PKCS1 ............................................. 40
         5. Canonicalization Algorithms ............................ 42
              1. Minimal Canonicalization .......................... 43
              2. Canonical XML ..................................... 43
         6. Transform Algorithms ................................... 44
              1. Canonicalization .................................. 44
              2. Base64 ............................................ 44
              3. XPath Filtering ................................... 45
              4. Enveloped Signature Transform ..................... 48
              5. XSLT Transform .................................... 48
        
   7.  XML Canonicalization and Syntax Constraint Considerations ... 49
         1. XML 1.0, Syntax Constraints, and Canonicalization  ..... 50
         2. DOM/SAX Processing and Canonicalization ................ 51
   8.  Security Considerations ..................................... 52
         1. Transforms ............................................. 52
              1. Only What is Signed is Secure ..................... 52
              2. Only What is "Seen" Should be Signed .............. 53
              3. "See" What is Signed .............................. 53
         2. Check the Security Model ............................... 54
         3. Algorithms, Key Lengths, Etc. .......................... 54
   9.  Schema, DTD, Data Model,and Valid Examples .................. 55
   10. Definitions ................................................. 56
   11. References .................................................. 58
   12. Authors' Addresses .......................................... 63
   13. Full Copyright Statement .................................... 64
        
   7.  XML Canonicalization and Syntax Constraint Considerations ... 49
         1. XML 1.0, Syntax Constraints, and Canonicalization  ..... 50
         2. DOM/SAX Processing and Canonicalization ................ 51
   8.  Security Considerations ..................................... 52
         1. Transforms ............................................. 52
              1. Only What is Signed is Secure ..................... 52
              2. Only What is "Seen" Should be Signed .............. 53
              3. "See" What is Signed .............................. 53
         2. Check the Security Model ............................... 54
         3. Algorithms, Key Lengths, Etc. .......................... 54
   9.  Schema, DTD, Data Model,and Valid Examples .................. 55
   10. Definitions ................................................. 56
   11. References .................................................. 58
   12. Authors' Addresses .......................................... 63
   13. Full Copyright Statement .................................... 64
        
1.0 Introduction
1.0 介绍

This document specifies XML syntax and processing rules for creating and representing digital signatures. XML Signatures can be applied to any digital content (data object), including XML. An XML Signature may be applied to the content of one or more resources. Enveloped or enveloping signatures are over data within the same XML document as the signature; detached signatures are over data external to the signature element. More specifically, this specification defines an XML signature element type and an XML signature application; conformance requirements for each are specified by way of schema definitions and prose respectively. This specification also includes other useful types that identify methods for referencing collections of resources, algorithms, and keying and management information.

本文档指定用于创建和表示数字签名的XML语法和处理规则。XML签名可以应用于任何数字内容(数据对象),包括XML。XML签名可以应用于一个或多个资源的内容。封装或封装签名与签名位于同一XML文档中的数据之上;分离的签名覆盖签名元素外部的数据。更具体地说,本规范定义了XML签名元素类型和XML签名应用程序;每种协议的一致性要求分别通过模式定义和散文来指定。该规范还包括其他有用的类型,这些类型标识用于引用资源集合、算法以及键控和管理信息的方法。

The XML Signature is a method of associating a key with referenced data (octets); it does not normatively specify how keys are associated with persons or institutions, nor the meaning of the data being referenced and signed. Consequently, while this specification is an important component of secure XML applications, it itself is not sufficient to address all application security/trust concerns, particularly with respect to using signed XML (or other data formats) as a basis of human-to-human communication and agreement. Such an application must specify additional key, algorithm, processing and rendering requirements. For further information, please see Security Considerations (section 8).

XML签名是一种将密钥与引用数据(八位字节)关联的方法;它没有规范性地规定密钥与个人或机构的关联方式,也没有规定被引用和签名的数据的含义。因此,虽然本规范是安全XML应用程序的重要组成部分,但它本身不足以解决所有应用程序安全/信任问题,特别是在使用签名XML(或其他数据格式)作为人与人之间通信和协议的基础方面。这样的应用程序必须指定额外的密钥、算法、处理和渲染要求。有关更多信息,请参阅安全注意事项(第8节)。

1.1 Editorial and Conformance Conventions
1.1 编辑和一致性约定

For readability, brevity, and historic reasons this document uses the term "signature" to generally refer to digital authentication values of all types.Obviously, the term is also strictly used to refer to

出于可读性、简洁性和历史原因,本文档使用术语“签名”通常指所有类型的数字认证值。显然,该术语也严格用于指代

authentication values that are based on public keys and that provide signer authentication. When specifically discussing authentication values based on symmetric secret key codes we use the terms authenticators or authentication codes. (See Check the Security Model, section 8.3.)

基于公钥并提供签名者身份验证的身份验证值。在具体讨论基于对称密钥码的身份验证值时,我们使用术语“身份验证者”或“身份验证码”。(参见第8.3节检查安全模型。)

This specification uses both XML Schemas [XML-schema] and DTDs [XML]. (Readers unfamiliar with DTD syntax may wish to refer to Ron Bourret's "Declaring Elements and Attributes in an XML DTD" [Bourret].) The schema definition is presently normative.

此规范同时使用XML模式[XML模式]和DTD[XML]。(不熟悉DTD语法的读者可能希望参考Ron Bourret的“在XML DTD中声明元素和属性”[Bourret])模式定义目前是规范性的。

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this specification are to be interpreted as described in RFC2119 [KEYWORDS]:

本规范中的关键词“必须”、“不得”、“要求”、“应”、“不得”、“应”、“不应”、“建议”、“可”和“可选”应按照RFC2119[关键词]中的描述进行解释:

"they MUST only be used where it is actually required for interoperation or to limit behavior which has potential for causing harm (e.g., limiting retransmissions)"

“它们必须仅在互操作或限制可能造成伤害的行为(例如限制重传)实际需要时使用”

Consequently, we use these capitalized keywords to unambiguously specify requirements over protocol and application features and behavior that affect the interoperability and security of implementations. These key words are not used (capitalized) to describe XML grammar; schema definitions unambiguously describe such requirements and we wish to reserve the prominence of these terms for the natural language descriptions of protocols and features. For instance, an XML attribute might be described as being "optional." Compliance with the XML-namespace specification [XML-ns] is described as "REQUIRED."

因此,我们使用这些大写的关键字来明确指定对协议和应用程序特性以及影响实现的互操作性和安全性的行为的要求。这些关键词不用于(大写)描述XML语法;模式定义明确地描述了这些需求,我们希望在协议和特性的自然语言描述中保留这些术语的重要性。例如,一个XML属性可能被描述为“可选的”,符合XML名称空间规范[XMLNS]被描述为“必需的”

1.2 Design Philosophy
1.2 设计理念

The design philosophy and requirements of this specification are addressed in the XML-Signature Requirements document [XML-Signature-RD].

XML签名需求文档[XML签名RD]阐述了本规范的设计理念和要求。

1.3 Versions, Namespaces and Identifiers
1.3 版本、名称空间和标识符
   No provision is made for an explicit version number in this syntax.
   If a future version is needed, it will use a different namespace  The
   XML namespace [XML-ns] URI that MUST be used by implementations of
   this (dated) specification is:
   xmlns="http://www.w3.org/2000/09/xmldsig#"
        
   No provision is made for an explicit version number in this syntax.
   If a future version is needed, it will use a different namespace  The
   XML namespace [XML-ns] URI that MUST be used by implementations of
   this (dated) specification is:
   xmlns="http://www.w3.org/2000/09/xmldsig#"
        

This namespace is also used as the prefix for algorithm identifiers used by this specification. While applications MUST support XML and XML-namespaces, the use of internal entities [XML] or our "dsig" XML namespace prefix and defaulting/scoping conventions are OPTIONAL; we use these facilities to provide compact and readable examples.

该名称空间还用作本规范使用的算法标识符的前缀。虽然应用程序必须支持XML和XML名称空间,但使用内部实体[XML]或我们的“dsig”XML名称空间前缀和默认/范围约定是可选的;我们使用这些工具来提供简洁易读的示例。

This specification uses Uniform Resource Identifiers [URI] to identify resources, algorithms, and semantics. The URI in the namespace declaration above is also used as a prefix for URIs under the control of this specification. For resources not under the control of this specification, we use the designated Uniform Resource Names [URN] or Uniform Resource Locators [URL] defined by its normative external specification. If an external specification has not allocated itself a Uniform Resource Identifier we allocate an identifier under our own namespace. For instance:

该规范使用统一资源标识符[URI]来标识资源、算法和语义。上述名称空间声明中的URI也用作受本规范控制的URI的前缀。对于不受本规范控制的资源,我们使用其规范性外部规范定义的指定统一资源名称[URN]或统一资源定位器[URL]。如果外部规范没有为自己分配统一的资源标识符,我们将在自己的命名空间下分配一个标识符。例如:

   SignatureProperties is identified and defined by this specification's
         namespace
         http://www.w3.org/2000/09/xmldsig#SignatureProperties
        
   SignatureProperties is identified and defined by this specification's
         namespace
         http://www.w3.org/2000/09/xmldsig#SignatureProperties
        
   XSLT is identified and defined by an external URI
         http://www.w3.org/TR/1999/PR-xslt-19991008
        
   XSLT is identified and defined by an external URI
         http://www.w3.org/TR/1999/PR-xslt-19991008
        

SHA1 is identified via this specification's namespace and defined via a normative reference http://www.w3.org/2000/09/xmldsig#sha1 FIPS PUB 180-1. Secure Hash Standard. U.S. Department of Commerce/National Institute of Standards and Technology.

SHA1通过本规范的名称空间进行标识,并通过规范性引用进行定义http://www.w3.org/2000/09/xmldsig#sha1 FIPS PUB 180-1。安全散列标准。美国商务部/国家标准与技术研究所。

Finally, in order to provide for terse namespace declarations we sometimes use XML internal entities [XML] within URIs. For instance:

最后,为了提供简洁的名称空间声明,我们有时在URI中使用XML内部实体[XML]。例如:

<?xml version='1.0'?> <!DOCTYPE Signature SYSTEM "xmldsig-core-schema.dtd" [ <!ENTITY dsig "http://www.w3.org/2000/09/xmldsig#"> ]> <Signature xmlns="&dsig;" Id="MyFirstSignature"> <SignedInfo> ...

<?xml版本='1.0'?><!DOCTYPE签名系统“xmldsig core schema.dtd”[<!ENTITY dsig”http://www.w3.org/2000/09/xmldsig#“>]><signaturexmlns=“&dsig;”Id=“MyFirstSignature”><SignedInfo>。。。

1.4 Acknowledgements
1.4 致谢

The contributions of the following working group members to this specification are gratefully acknowledged:

感谢以下工作组成员对本规范的贡献:

* Mark Bartel, JetForm Corporation (Author) * John Boyer, PureEdge (Author) * Mariano P. Consens, University of Waterloo

* Mark Bartel,JETForm公司(作者)* John Boyer,PrEdEdRead(作者)* Mariano P. Consens,滑铁卢大学

* John Cowan, Reuters Health * Donald Eastlake 3rd, Motorola (Chair, Author/Editor) * Barb Fox, Microsoft (Author) * Christian Geuer-Pollmann, University Siegen * Tom Gindin, IBM * Phillip Hallam-Baker, VeriSign Inc * Richard Himes, US Courts * Merlin Hughes, Baltimore * Gregor Karlinger, IAIK TU Graz * Brian LaMacchia, Microsoft * Peter Lipp, IAIK TU Graz * Joseph Reagle, W3C (Chair, Author/Editor) * Ed Simon, Entrust Technologies Inc. (Author) * David Solo, Citigroup (Author/Editor) * Petteri Stenius, DONE Information, Ltd * Raghavan Srinivas, Sun * Kent Tamura, IBM * Winchel Todd Vincent III, GSU * Carl Wallace, Corsec Security, Inc. * Greg Whitehead, Signio Inc.

* 约翰·考恩,路透社健康*唐纳德·伊斯特莱克3号,摩托罗拉(主席,作者/编辑)*巴布·福克斯,微软(作者)*克里斯蒂安·盖尔·波尔曼,锡根大学*汤姆·金丁,IBM*菲利普·哈拉姆·贝克,威瑞信公司*理查德·希姆斯,美国法院*梅林·休斯,巴尔的摩*格雷戈·卡林格,伊克·图格拉兹*布莱恩·拉马奇,微软*彼得·利普,IAIK TU Graz*Joseph Reagle,W3C(主席、作者/编辑)*Ed Simon,委托技术公司(作者)*David Solo,花旗集团(作者/编辑)*Petteri Stenius,DONE Information,Ltd*Raghavan Srinivas,Sun*Kent Tamura,IBM*Winchel Todd Vincent III,GSU*卡尔华莱士,Corsec Security,Inc.*Greg Whitehead,Signio Inc。

As are the last call comments from the following:

以下是最后一次通话的评论:

* Dan Connolly, W3C * Paul Biron, Kaiser Permanente, on behalf of the XML Schema WG. * Martin J. Duerst, W3C; and Masahiro Sekiguchi, Fujitsu; on behalf of the Internationalization WG/IG. * Jonathan Marsh, Microsoft, on behalf of the Extensible Stylesheet Language WG.

* Dan Connolly,W3C*Paul Biron,Kaiser Permanente,代表XML模式工作组。*Martin J.Duerst,W3C;和富士通关口正彦,;代表国际化工作组/IG.*JonathanMarsh,微软,代表可扩展样式表语言WG。

2.0 Signature Overview and Examples
2.0 签名概述和示例

This section provides an overview and examples of XML digital signature syntax. The specific processing is given in Processing Rules (section 3). The formal syntax is found in Core Signature Syntax (section 4) and Additional Signature Syntax (section 5).

本节提供XML数字签名语法的概述和示例。具体处理在处理规则(第3节)中给出。形式语法可在核心签名语法(第4节)和附加签名语法(第5节)中找到。

In this section, an informal representation and examples are used to describe the structure of the XML signature syntax. This representation and examples may omit attributes, details and potential features that are fully explained later.

在本节中,将使用非正式的表示和示例来描述XML签名语法的结构。此表示法和示例可能会忽略属性、细节和潜在特征,这些将在后面详细解释。

XML Signatures are applied to arbitrary digital content (data objects) via an indirection. Data objects are digested, the resulting value is placed in an element (with other information) and that element is then digested and cryptographically signed. XML digital signatures are represented by the Signature element which has

XML签名通过间接寻址应用于任意数字内容(数据对象)。对数据对象进行摘要处理,结果值与其他信息一起放入元素中,然后对该元素进行摘要处理并进行加密签名。XML数字签名由具有

the following structure (where "?" denotes zero or one occurrence; "+" denotes one or more occurrences; and "*" denotes zero or more occurrences):

以下结构(其中“?”表示零或一次出现;“+”表示一次或多次出现;“*”表示零或多次出现):

      <Signature>
        <SignedInfo>
          (CanonicalizationMethod)
          (SignatureMethod)
          (<Reference (URI=)? >
            (Transforms)?
            (DigestMethod)
            (DigestValue)
          </Reference>)+
        </SignedInfo>
        (SignatureValue)
       (KeyInfo)?
       (Object)*
      </Signature>
        
      <Signature>
        <SignedInfo>
          (CanonicalizationMethod)
          (SignatureMethod)
          (<Reference (URI=)? >
            (Transforms)?
            (DigestMethod)
            (DigestValue)
          </Reference>)+
        </SignedInfo>
        (SignatureValue)
       (KeyInfo)?
       (Object)*
      </Signature>
        

Signatures are related to data objects via URIs [URI]. Within an XML document, signatures are related to local data objects via fragment identifiers. Such local data can be included within an enveloping signature or can enclose an enveloped signature. Detached signatures are over external network resources or local data objects that resides within the same XML document as sibling elements; in this case, the signature is neither enveloping (signature is parent) nor enveloped (signature is child). Since a Signature element (and its Id attribute value/name) may co-exist or be combined with other elements (and their IDs) within a single XML document, care should be taken in choosing names such that there are no subsequent collisions that violate the ID uniqueness validity constraint [XML].

签名通过URI[URI]与数据对象相关。在XML文档中,签名通过片段标识符与本地数据对象相关。这种本地数据可以包含在信封签名中,也可以包含在信封签名中。分离的签名位于外部网络资源或本地数据对象上,这些对象与同级元素位于同一XML文档中;在这种情况下,签名既不是信封(签名是父项)也不是信封(签名是子项)。由于签名元素(及其Id属性值/名称)可能与单个XML文档中的其他元素(及其Id)共存或组合,因此在选择名称时应小心,以免随后发生违反Id唯一性有效性约束[XML]的冲突。

2.1 Simple Example (Signature, SignedInfo, Methods, and References)
2.1 简单示例(签名、SignedInfo、方法和引用)

The following example is a detached signature of the content of the HTML4 in XML specification.

以下示例是XML规范中HTML4内容的分离签名。

[s01] <Signature Id="MyFirstSignature"
       xmlns="http://www.w3.org/2000/09/xmldsig#">
[s02]   <SignedInfo>
[s03]   <CanonicalizationMethod
         Algorithm="http://www.w3.org/TR/2000/CR-xml-c14n-20001026"/>
[s04]   <SignatureMethod
         Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/>
[s05]   <Reference URI="http://www.w3.org/TR/2000/REC-xhtml1-20000126/">
[s06]     <Transforms>
[s07]       <Transform Algorithm="http://www.w3.org/TR/2000/
             CR-xml-c14n-20001026"/>
        
[s01] <Signature Id="MyFirstSignature"
       xmlns="http://www.w3.org/2000/09/xmldsig#">
[s02]   <SignedInfo>
[s03]   <CanonicalizationMethod
         Algorithm="http://www.w3.org/TR/2000/CR-xml-c14n-20001026"/>
[s04]   <SignatureMethod
         Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/>
[s05]   <Reference URI="http://www.w3.org/TR/2000/REC-xhtml1-20000126/">
[s06]     <Transforms>
[s07]       <Transform Algorithm="http://www.w3.org/TR/2000/
             CR-xml-c14n-20001026"/>
        
[s08]     </Transforms>
[s09]     <DigestMethod Algorithm="http://www.w3.org/2000/09/
           xmldsig#sha1"/>
[s10]     <DigestValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</DigestValue>
[s11]   </Reference>
[s12] </SignedInfo>
[s13]   <SignatureValue>MC0CFFrVLtRlk=...</SignatureValue>
[s14]   <KeyInfo>
[s15a]    <KeyValue>
[s15b]      <DSAKeyValue>
[s15c]        <P>...</P><Q>...</Q><G>...</G><Y>...</Y>
[s15d]      </DSAKeyValue>
[s15e]    </KeyValue>
[s16]   </KeyInfo>
[s17] </Signature>
        
[s08]     </Transforms>
[s09]     <DigestMethod Algorithm="http://www.w3.org/2000/09/
           xmldsig#sha1"/>
[s10]     <DigestValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</DigestValue>
[s11]   </Reference>
[s12] </SignedInfo>
[s13]   <SignatureValue>MC0CFFrVLtRlk=...</SignatureValue>
[s14]   <KeyInfo>
[s15a]    <KeyValue>
[s15b]      <DSAKeyValue>
[s15c]        <P>...</P><Q>...</Q><G>...</G><Y>...</Y>
[s15d]      </DSAKeyValue>
[s15e]    </KeyValue>
[s16]   </KeyInfo>
[s17] </Signature>
        

[s02-12] The required SignedInfo element is the information that is actually signed. Core validation of SignedInfo consists of two mandatory processes: validation of the signature over SignedInfo and validation of each Reference digest within SignedInfo. Note that the algorithms used in calculating the SignatureValue are also included in the signed information while the SignatureValue element is outside SignedInfo.

[s02-12]所需的SignedInfo元素是实际签名的信息。SignedInfo的核心验证由两个强制性过程组成:SignedInfo上的签名验证和SignedInfo中每个参考摘要的验证。请注意,当SignatureValue元素位于SignedInfo之外时,计算SignatureValue时使用的算法也包含在签名信息中。

[s03] The CanonicalizationMethod is the algorithm that is used to canonicalize the SignedInfo element before it is digested as part of the signature operation.

[s03]规范化方法是用于规范化SignedInfo元素的算法,然后将其作为签名操作的一部分进行摘要处理。

[s04] The SignatureMethod is the algorithm that is used to convert the canonicalized SignedInfo into the SignatureValue. It is a combination of a digest algorithm and a key dependent algorithm and possibly other algorithms such as padding, for example RSA-SHA1. The algorithm names are signed to resist attacks based on substituting a weaker algorithm. To promote application interoperability we specify a set of signature algorithms that MUST be implemented, though their use is at the discretion of the signature creator. We specify additional algorithms as RECOMMENDED or OPTIONAL for implementation and the signature design permits arbitrary user algorithm specification.

[s04]SignatureMethod是用于将规范化SignedInfo转换为SignatureValue的算法。它是摘要算法和密钥相关算法以及可能的其他算法(如填充)的组合,例如RSA-SHA1。对算法名称进行签名,以抵抗基于替换较弱算法的攻击。为了促进应用程序的互操作性,我们指定了一组必须实现的签名算法,尽管它们的使用由签名创建者决定。我们为实现指定推荐或可选的附加算法,签名设计允许任意用户算法规范。

[s05-11] Each Reference element includes the digest method and resulting digest value calculated over the identified data object. It also may include transformations that produced the input to the digest operation. A data object is signed by computing its digest value and a signature over that value. The signature is later checked via reference and signature validation.

[s05-11]每个参考元素包括摘要方法和通过识别的数据对象计算得出的摘要值。它还可能包括生成摘要操作输入的转换。数据对象通过计算其摘要值和该值上的签名进行签名。随后通过引用和签名验证检查签名。

[s14-16] KeyInfo indicates the key to be used to validate the signature. Possible forms for identification include certificates, key names, and key agreement algorithms and information -- we define only a few. KeyInfo is optional for two reasons. First, the signer may not wish to reveal key information to all document processing parties. Second, the information may be known within the application's context and need not be represented explicitly. Since KeyInfo is outside of SignedInfo, if the signer wishes to bind the keying information to the signature, a Reference can easily identify and include the KeyInfo as part of the signature.

[s14-16]KeyInfo表示用于验证签名的密钥。可能的标识形式包括证书、密钥名称、密钥协商算法和信息——我们只定义了一些。KeyInfo是可选的,有两个原因。首先,签名者可能不希望向所有文档处理方透露关键信息。其次,信息可能在应用程序的上下文中已知,不需要显式表示。由于KeyInfo在SignedInfo之外,如果签名者希望将密钥信息绑定到签名,则引用可以很容易地识别并将KeyInfo作为签名的一部分。

2.1.1 More on Reference
2.1.1 更多参考资料
[s05]   <Reference URI="http://www.w3.org/TR/2000/REC-xhtml1-20000126/">
[s06]     <Transforms>
[s07]       <Transform
             Algorithm="http://www.w3.org/TR/2000/
             CR-xml-c14n-20001026"/>
[s08]     </Transforms>
[s09]     <DigestMethod Algorithm="http://www.w3.org/2000/09/
           xmldsig#sha1"/>
[s10]     <DigestValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</DigestValue>
[s11]   </Reference>
        
[s05]   <Reference URI="http://www.w3.org/TR/2000/REC-xhtml1-20000126/">
[s06]     <Transforms>
[s07]       <Transform
             Algorithm="http://www.w3.org/TR/2000/
             CR-xml-c14n-20001026"/>
[s08]     </Transforms>
[s09]     <DigestMethod Algorithm="http://www.w3.org/2000/09/
           xmldsig#sha1"/>
[s10]     <DigestValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</DigestValue>
[s11]   </Reference>
        

[s05] The optional URI attribute of Reference identifies the data object to be signed. This attribute may be omitted on at most one Reference in a Signature. (This limitation is imposed in order to ensure that references and objects may be matched unambiguously.)

[s05]Reference的可选URI属性标识要签名的数据对象。签名中最多可以在一个引用上省略此属性。(施加此限制是为了确保引用和对象可以明确匹配。)

[s05-08] This identification, along with the transforms, is a description provided by the signer on how they obtained the signed data object in the form it was digested (i.e., the digested content). The verifier may obtain the digested content in another method so long as the digest verifies. In particular, the verifier may obtain the content from a different location such as a local store than that specified in the URI.

[s05-08]此标识以及转换是签名者提供的一种描述,说明他们如何以摘要形式获得签名数据对象(即摘要内容)。验证者可以在另一种方法中获得消化内容,只要消化进行验证。具体地,验证器可以从与URI中指定的位置不同的位置(例如本地存储)获取内容。

[s06-08] Transforms is an optional ordered list of processing steps that were applied to the resource's content before it was digested. Transforms can include operations such as canonicalization, encoding/decoding (including compression/inflation), XSLT and XPath. XPath transforms permit the signer to derive an XML document that omits portions of the source document. Consequently those excluded portions can change without affecting signature validity. For example, if the resource being signed encloses the signature itself, such a transform must be used to exclude the signature value from its own computation. If no Transforms element is present, the resource's content is digested directly. While we specify mandatory (and

[s06-08]Transforms是一个可选的有序处理步骤列表,这些步骤在资源内容被消化之前应用于资源内容。转换可以包括规范化、编码/解码(包括压缩/膨胀)、XSLT和XPath等操作。XPath转换允许签名者派生省略部分源文档的XML文档。因此,这些被排除的部分可以在不影响签名有效性的情况下进行更改。例如,如果被签名的资源包含签名本身,则必须使用这种转换将签名值从其自身的计算中排除。如果不存在Transforms元素,则直接消化资源的内容。而我们规定了强制性(和

optional) canonicalization and decoding algorithms, user specified transforms are permitted.

可选)规范化和解码算法,允许用户指定的转换。

[s09-10] DigestMethod is the algorithm applied to the data after Transforms is applied (if specified) to yield the DigestValue. The signing of the DigestValue is what binds a resources content to the signer's key.

[s09-10]DigestMethod是在应用转换(如果指定)以产生DigestValue后应用于数据的算法。DigestValue的签名将资源内容绑定到签名者的密钥。

2.2 Extended Example (Object and SignatureProperty)
2.2 扩展示例(对象和签名属性)

This specification does not address mechanisms for making statements or assertions. Instead, this document defines what it means for something to be signed by an XML Signature (message authentication, integrity, and/or signer authentication). Applications that wish to represent other semantics must rely upon other technologies, such as [XML, RDF]. For instance, an application might use a foo:assuredby attribute within its own markup to reference a Signature element. Consequently, it's the application that must understand and know how to make trust decisions given the validity of the signature and the meaning of assuredby syntax. We also define a SignatureProperties element type for the inclusion of assertions about the signature itself (e.g., signature semantics, the time of signing or the serial number of hardware used in cryptographic processes). Such assertions may be signed by including a Reference for the SignatureProperties in SignedInfo. While the signing application should be very careful about what it signs (it should understand what is in the SignatureProperty) a receiving application has no obligation to understand that semantic (though its parent trust engine may wish to). Any content about the signature generation may be located within the SignatureProperty element. The mandatory Target attribute references the Signature element to which the property applies.

本规范不涉及生成语句或断言的机制。相反,本文档定义了由XML签名(消息身份验证、完整性和/或签名者身份验证)签名的含义。希望表示其他语义的应用程序必须依赖于其他技术,例如[XML,RDF]。例如,应用程序可能在其自己的标记中使用foo:assuredby属性来引用签名元素。因此,应用程序必须理解并知道如何根据签名的有效性和assuredby语法的含义做出信任决策。我们还定义了SignatureProperties元素类型,用于包含关于签名本身的断言(例如,签名语义、签名时间或加密过程中使用的硬件序列号)。这些断言可以通过在SignedInfo中包含SignatureProperties的引用来签名。虽然签名应用程序应该非常小心它所签名的内容(它应该理解SignatureProperty中的内容),但接收应用程序没有义务理解该语义(尽管其父信任引擎可能希望)。关于签名生成的任何内容都可以位于SignatureProperty元素中。强制目标属性引用属性应用到的签名元素。

Consider the preceding example with an additional reference to a local Object that includes a SignatureProperty element. (Such a signature would not only be detached [p02] but enveloping [p03].)

考虑前面的示例,对包含StavaTurnFrand元素的本地对象进行附加引用。(这样的签名不仅会被分离[p02],还会被封装[p03]。)

[   ]  <Signature Id="MySecondSignature" ...>
[p01]  <SignedInfo>
[   ]   ...
[p02]   <Reference URI="http://www.w3.org/TR/xml-stylesheet/">
[   ]   ...
[p03]   <Reference URI="#AMadeUpTimeStamp"
[p04]         Type="http://www.w3.org/2000/09/
                    xmldsig#SignatureProperties">
[p05]    <DigestMethod Algorithm="http://www.w3.org/2000/09/
          xmldsig#sha1"/>
[p06]    <DigestValue>k3453rvEPO0vKtMup4NbeVu8nk=</DigestValue>
[p07]   </Reference>
        
[   ]  <Signature Id="MySecondSignature" ...>
[p01]  <SignedInfo>
[   ]   ...
[p02]   <Reference URI="http://www.w3.org/TR/xml-stylesheet/">
[   ]   ...
[p03]   <Reference URI="#AMadeUpTimeStamp"
[p04]         Type="http://www.w3.org/2000/09/
                    xmldsig#SignatureProperties">
[p05]    <DigestMethod Algorithm="http://www.w3.org/2000/09/
          xmldsig#sha1"/>
[p06]    <DigestValue>k3453rvEPO0vKtMup4NbeVu8nk=</DigestValue>
[p07]   </Reference>
        
[p08]  </SignedInfo>
[p09]  ...
[p10]  <Object>
[p11]   <SignatureProperties>
[p12]     <SignatureProperty Id="AMadeUpTimeStamp"
           Target="#MySecondSignature">
[p13]        <timestamp xmlns="http://www.ietf.org/rfc3075.txt">
[p14]          <date>19990908</date>
[p15]          <time>14:34:34:34</time>
[p16]        </timestamp>
[p17]     </SignatureProperty>
[p18]   </SignatureProperties>
[p19]  </Object>
[p20]</Signature>
        
[p08]  </SignedInfo>
[p09]  ...
[p10]  <Object>
[p11]   <SignatureProperties>
[p12]     <SignatureProperty Id="AMadeUpTimeStamp"
           Target="#MySecondSignature">
[p13]        <timestamp xmlns="http://www.ietf.org/rfc3075.txt">
[p14]          <date>19990908</date>
[p15]          <time>14:34:34:34</time>
[p16]        </timestamp>
[p17]     </SignatureProperty>
[p18]   </SignatureProperties>
[p19]  </Object>
[p20]</Signature>
        

[p04] The optional Type attribute of Reference provides information about the resource identified by the URI. In particular, it can indicate that it is an Object, SignatureProperty, or Manifest element. This can be used by applications to initiate special processing of some Reference elements. References to an XML data element within an Object element SHOULD identify the actual element pointed to. Where the element content is not XML (perhaps it is binary or encoded data) the reference should identify the Object and the Reference Type, if given, SHOULD indicate Object. Note that Type is advisory and no action based on it or checking of its correctness is required by core behavior.

[p04]Reference的可选类型属性提供有关URI标识的资源的信息。特别是,它可以指示它是对象、SignatureProperty或Manifest元素。应用程序可以使用它来启动某些参考元素的特殊处理。对象元素中对XML数据元素的引用应标识指向的实际元素。如果元素内容不是XML(可能是二进制或编码数据),则引用应标识对象,并且引用类型(如果给定)应指示对象。注意,类型是建议性的,核心行为不需要基于它的操作或检查其正确性。

[p10] Object is an optional element for including data objects within the signature element or elsewhere. The Object can be optionally typed and/or encoded.

[p10]对象是可选元素,用于将数据对象包含在签名元素内或其他位置。对象可以选择键入和/或编码。

[p11-18] Signature properties, such as time of signing, can be optionally signed by identifying them from within a Reference. (These properties are traditionally called signature "attributes" although that term has no relationship to the XML term "attribute".)

[p11-18]签名属性(如签名时间)可以通过在引用中标识它们来进行选择性签名。(这些属性传统上称为签名“属性”,尽管该术语与XML术语“属性”没有关系。)

2.3 Extended Example (Object and Manifest)
2.3 扩展示例(对象和清单)

The Manifest element is provided to meet additional requirements not directly addressed by the mandatory parts of this specification. Two requirements and the way the Manifest satisfies them follows.

提供清单元素是为了满足本规范强制性部分未直接解决的附加要求。两个要求和清单满足它们的方式如下。

First, applications frequently need to efficiently sign multiple data objects even where the signature operation itself is an expensive public key signature. This requirement can be met by including multiple Reference elements within SignedInfo since the inclusion of each digest secures the data digested. However, some applications may not want the core validation behavior associated with this

首先,应用程序经常需要高效地对多个数据对象进行签名,即使签名操作本身是昂贵的公钥签名。可以通过在SignedInfo中包含多个参考元素来满足这一要求,因为包含每个摘要可以确保摘要数据的安全性。但是,某些应用程序可能不希望核心验证行为与此关联

approach because it requires every Reference within SignedInfo to undergo reference validation -- the DigestValue elements are checked. These applications may wish to reserve reference validation decision logic to themselves. For example, an application might receive a signature valid SignedInfo element that includes three Reference elements. If a single Reference fails (the identified data object when digested does not yield the specified DigestValue) the signature would fail core validation. However, the application may wish to treat the signature over the two valid Reference elements as valid or take different actions depending on which fails. To accomplish this, SignedInfo would reference a Manifest element that contains one or more Reference elements (with the same structure as those in SignedInfo). Then, reference validation of the Manifest is under application control.

方法,因为它要求SignedInfo中的每个引用都要经过引用验证——检查DigestValue元素。这些应用程序可能希望为自己保留引用验证决策逻辑。例如,应用程序可能会收到一个签名有效的SignedInfo元素,该元素包含三个引用元素。如果单个引用失败(分解时标识的数据对象不会产生指定的DigestValue),则签名将无法通过核心验证。然而,应用程序可能希望将两个有效引用元素上的签名视为有效,或者根据哪个失败而采取不同的操作。为此,SignedInfo将引用包含一个或多个引用元素(与SignedInfo中的元素具有相同的结构)的清单元素。然后,清单的引用验证由应用程序控制。

Second, consider an application where many signatures (using different keys) are applied to a large number of documents. An inefficient solution is to have a separate signature (per key) repeatedly applied to a large SignedInfo element (with many References); this is wasteful and redundant. A more efficient solution is to include many references in a single Manifest that is then referenced from multiple Signature elements.

其次,考虑一个应用程序,其中许多签名(使用不同的密钥)被应用到大量文档中。一个低效的解决方案是将一个单独的签名(每个密钥)重复应用于一个大型SignedInfo元素(有许多引用);这是浪费和多余的。更有效的解决方案是在单个清单中包含多个引用,然后从多个签名元素引用该清单。

The example below includes a Reference that signs a Manifest found within the Object element.

下面的示例包括一个引用,该引用对在Object元素中找到的清单进行签名。

[   ] ...
[m01]   <Reference URI="#MyFirstManifest"
[m02]     Type="http://www.w3.org/2000/09/xmldsig#Manifest">
[m03]     <DigestMethod Algorithm="http://www.w3.org/2000/09/
           xmldsig#sha1"/>
[m04]     <DigestValue>345x3rvEPO0vKtMup4NbeVu8nk=</DigestValue>
[m05]   </Reference>
[   ] ...
[m06] <Object>
[m07]   <Manifest Id="MyFirstManifest">
[m08]     <Reference>
[m09]     ...
[m10]     </Reference>
[m11]     <Reference>
[m12]     ...
[m13]     </Reference>
[m14]   </Manifest>
[m15] </Object>
        
[   ] ...
[m01]   <Reference URI="#MyFirstManifest"
[m02]     Type="http://www.w3.org/2000/09/xmldsig#Manifest">
[m03]     <DigestMethod Algorithm="http://www.w3.org/2000/09/
           xmldsig#sha1"/>
[m04]     <DigestValue>345x3rvEPO0vKtMup4NbeVu8nk=</DigestValue>
[m05]   </Reference>
[   ] ...
[m06] <Object>
[m07]   <Manifest Id="MyFirstManifest">
[m08]     <Reference>
[m09]     ...
[m10]     </Reference>
[m11]     <Reference>
[m12]     ...
[m13]     </Reference>
[m14]   </Manifest>
[m15] </Object>
        
3.0 Processing Rules
3.0 处理规则

The sections below describe the operations to be performed as part of signature generation and validation.

以下各节描述了作为签名生成和验证的一部分要执行的操作。

3.1 Core Generation
3.1 核心代

The REQUIRED steps include the generation of Reference elements and the SignatureValue over SignedInfo.

所需步骤包括生成参考元素和SignatureValue over SignedInfo。

3.1.1 Reference Generation
3.1.1 参考生成

For each data object being signed:

对于要签名的每个数据对象:

1. Apply the Transforms, as determined by the application, to the data object. 2. Calculate the digest value over the resulting data object.

1. 将应用程序确定的变换应用于数据对象。2.计算结果数据对象上的摘要值。

3. Create a Reference element, including the (optional) identification of the data object, any (optional) transform elements, the digest algorithm and the DigestValue.

3. 创建一个引用元素,包括数据对象的(可选)标识、任何(可选)转换元素、摘要算法和摘要值。

3.1.2 Signature Generation
3.1.2 签名生成

1. Create SignedInfo element with SignatureMethod, CanonicalizationMethod and Reference(s). 2. Canonicalize and then calculate the SignatureValue over SignedInfo based on algorithms specified in SignedInfo. 3. Construct the Signature element that includes SignedInfo, Object(s) (if desired, encoding may be different than that used for signing), KeyInfo (if required), and SignatureValue.

1. 使用SignatureMethod、规范化方法和引用创建SignedInfo元素。2.规范化,然后根据SignedInfo中指定的算法计算SignedInfo上的SignatureValue。3.构造包含SignedInfo、Object(如果需要,编码可能与用于签名的编码不同)、KeyInfo(如果需要)和SignatureValue的签名元素。

3.2 Core Validation
3.2 核心验证

The REQUIRED steps of core validation include (1) reference validation, the verification of the digest contained in each Reference in SignedInfo, and (2) the cryptographic signature validation of the signature calculated over SignedInfo.

核心验证所需的步骤包括(1)参考验证、SignedInfo中每个参考中包含的摘要验证,以及(2)SignedInfo上计算的签名的加密签名验证。

Note, there may be valid signatures that some signature applications are unable to validate. Reasons for this include failure to implement optional parts of this specification, inability or unwillingness to execute specified algorithms, or inability or unwillingness to dereference specified URIs (some URI schemes may cause undesirable side effects), etc.

注意,可能存在一些签名应用程序无法验证的有效签名。其原因包括未能实现本规范的可选部分,无法或不愿意执行指定的算法,或无法或不愿意取消对指定URI的引用(某些URI方案可能会导致不良副作用),等等。

3.2.1 Reference Validation
3.2.1 参考验证

For each Reference in SignedInfo:

对于SignedInfo中的每个引用:

1. Canonicalize the SignedInfo element based on the CanonicalizationMethod in SignedInfo. 2. Obtain the data object to be digested. (The signature application may rely upon the identification (URI) and Transforms provided by the signer in the Reference element, or it may obtain the content through other means such as a local cache.) 3. Digest the resulting data object using the DigestMethod specified in its Reference specification. 4. Compare the generated digest value against DigestValue in the SignedInfo Reference; if there is any mismatch, validation fails.

1. 根据SignedInfo中的规范化方法规范化SignedInfo元素。2.获取要摘要的数据对象。(签名应用程序可以依赖于签名者在参考元素中提供的标识(URI)和转换,或者可以通过诸如本地缓存之类的其他手段获得内容。)3。使用其参考规范中指定的DigestMethod摘要生成的数据对象。4.将生成的摘要值与SignedInfo引用中的摘要值进行比较;如果存在任何不匹配,验证将失败。

Note, SignedInfo is canonicalized in step 1 to ensure the application Sees What is Signed, which is the canonical form. For instance, if the CanonicalizationMethod rewrote the URIs (e.g., absolutizing relative URIs) the signature processing must be cognizant of this.

请注意,SignedInfo在步骤1中被规范化,以确保应用程序看到已签名的内容,即规范形式。例如,如果规范化方法重写了URI(例如,绝对化相对URI),则签名处理必须认识到这一点。

3.2.2 Signature Validation
3.2.2 签名验证

1. Obtain the keying information from KeyInfo or from an external source. 2. Obtain the canonical form of the SignatureMethod using the CanonicalizationMethod and use the result (and previously obtained KeyInfo) to validate the SignatureValue over the SignedInfo element.

1. 从KeyInfo或外部来源获取密钥信息。2.使用规范化方法获取SignatureMethod的规范形式,并使用结果(以及以前获得的KeyInfo)验证SignedInfo元素上的SignatureValue。

Note, KeyInfo (or some transformed version thereof) may be signed via a Reference element. Transformation and validation of this reference (3.2.1) is orthogonal to Signature Validation which uses the KeyInfo as parsed.

注意,KeyInfo(或其一些转换版本)可以通过引用元素进行签名。此参考(3.2.1)的转换和验证与签名验证正交,签名验证使用解析的KeyInfo。

Additionally, the SignatureMethod URI may have been altered by the canonicalization of SignedInfo (e.g., absolutization of relative URIs) and it is the canonical form that MUST be used. However, the required canonicalization [XML-C14N] of this specification does not change URIs.

此外,SignatureMethod URI可能因SignedInfo的规范化(例如,相对URI的绝对化)而改变,必须使用规范化形式。但是,此规范所需的规范化[XML-C14N]不会改变URI。

4.0 Core Signature Syntax
4.0 核心签名语法

The general structure of an XML signature is described in Signature Overview (section 2). This section provides detailed syntax of the core signature features. Features described in this section are mandatory to implement unless otherwise indicated. The syntax is defined via DTDs and [XML-Schema] with the following XML preamble, declaration, internal entity, and simpleType:

XML签名的一般结构在签名概述(第2节)中描述。本节提供了核心签名功能的详细语法。除非另有说明,否则本节中描述的功能是必须实现的。语法通过DTD和[XML Schema]定义,具有以下XML前导、声明、内部实体和simpleType:

Schema Definition:

架构定义:

<!DOCTYPE schema
   PUBLIC "-//W3C//DTD XMLSCHEMA 200010//EN"
          "http://www.w3.org/2000/10/XMLSchema.dtd"
  [
   <!ATTLIST schema
     xmlns:ds CDATA #FIXED "http://www.w3.org/2000/09/xmldsig#">
   <!ENTITY dsig 'http://www.w3.org/2000/09/xmldsig#'>
  ]>
        
<!DOCTYPE schema
   PUBLIC "-//W3C//DTD XMLSCHEMA 200010//EN"
          "http://www.w3.org/2000/10/XMLSchema.dtd"
  [
   <!ATTLIST schema
     xmlns:ds CDATA #FIXED "http://www.w3.org/2000/09/xmldsig#">
   <!ENTITY dsig 'http://www.w3.org/2000/09/xmldsig#'>
  ]>
        
<schema xmlns="http://www.w3.org/2000/10/XMLSchema"
      xmlns:ds="&dsig;"
      targetNamespace="&dsig;"
      version="0.1"
      elementFormDefault="qualified">
        
<schema xmlns="http://www.w3.org/2000/10/XMLSchema"
      xmlns:ds="&dsig;"
      targetNamespace="&dsig;"
      version="0.1"
      elementFormDefault="qualified">
        
<!-- Basic Types Defined for Signatures -->
        
<!-- Basic Types Defined for Signatures -->
        

<simpleType name="CryptoBinary"> <restriction base="binary"> <encoding value="base64"/> </restriction> </simpleType> DTD:

<simpleType name=“CryptoBinary”><restriction base=“binary”><encoding value=“base64”/></restriction></simpleType>DTD:

<!-- These entity declarations permit the flexible parts of Signature
     content model to be easily expanded -->
        
<!-- These entity declarations permit the flexible parts of Signature
     content model to be easily expanded -->
        
<!ENTITY % Object.ANY '(#PCDATA|Signature|SignatureProperties|
                        Manifest)*'>
<!ENTITY % Method.ANY '(#PCDATA|HMACOutputLength)*'>
<!ENTITY % Transform.ANY '(#PCDATA|XPath|XSLT)'>
<!ENTITY % SignatureProperty.ANY '(#PCDATA)*'>
<!ENTITY % Key.ANY '(#PCDATA|KeyName|KeyValue|RetrievalMethod|
           X509Data|PGPData|MgmtData|DSAKeyValue|RSAKeyValue)*'>
        
<!ENTITY % Object.ANY '(#PCDATA|Signature|SignatureProperties|
                        Manifest)*'>
<!ENTITY % Method.ANY '(#PCDATA|HMACOutputLength)*'>
<!ENTITY % Transform.ANY '(#PCDATA|XPath|XSLT)'>
<!ENTITY % SignatureProperty.ANY '(#PCDATA)*'>
<!ENTITY % Key.ANY '(#PCDATA|KeyName|KeyValue|RetrievalMethod|
           X509Data|PGPData|MgmtData|DSAKeyValue|RSAKeyValue)*'>
        
4.1 The Signature element
4.1 签名元素

The Signature element is the root element of an XML Signature. Signature elements MUST be laxly schema valid [XML-schema] with respect to the following schema definition: Schema Definition:

签名元素是XML签名的根元素。对于以下架构定义,签名元素必须是松散架构有效的[XML架构]:架构定义:

<element name="Signature">
  <complexType>
    <sequence>
      <element ref="ds:SignedInfo"/>
        
<element name="Signature">
  <complexType>
    <sequence>
      <element ref="ds:SignedInfo"/>
        

<element ref="ds:SignatureValue"/> <element ref="ds:KeyInfo" minOccurs="0"/> <element ref="ds:Object" minOccurs="0" maxOccurs="unbounded"/> </sequence> <attribute name="Id" type="ID" use="optional"/> </complexType> </element> DTD:

<element ref=“ds:SignatureValue”/><element ref=“ds:KeyInfo”minOccurs=“0”/><element ref=“ds:Object”minOccurs=“0”maxOccurs=“unbounded”/></sequence><attribute name=“Id”type=“Id”use=“optional”/

<!ELEMENT Signature (SignedInfo, SignatureValue, KeyInfo?, Object*)  >
<!ATTLIST Signature
          xmlns  CDATA   #FIXED 'http://www.w3.org/2000/09/xmldsig#'
          Id     ID  #IMPLIED >
        
<!ELEMENT Signature (SignedInfo, SignatureValue, KeyInfo?, Object*)  >
<!ATTLIST Signature
          xmlns  CDATA   #FIXED 'http://www.w3.org/2000/09/xmldsig#'
          Id     ID  #IMPLIED >
        
4.2 The SignatureValue Element
4.2 SignatureValue元素

The SignatureValue element contains the actual value of the digital signature; it is always encoded using base64 [MIME]. While we specify a mandatory and optional to implement SignatureMethod algorithms, user specified algorithms are permitted. Schema Definition:

SignatureValue元素包含数字签名的实际值;它总是使用base64[MIME]进行编码。虽然我们指定了强制和可选的方法来实现SignatureMethod算法,但用户指定的算法是允许的。架构定义:

<element name="SignatureValue" type="ds:CryptoBinary"/> DTD:

<element name=“SignatureValue”type=“ds:CryptoBinary”/>DTD:

   <!ELEMENT SignatureValue (#PCDATA) >
        
   <!ELEMENT SignatureValue (#PCDATA) >
        
4.3 The SignedInfo Element
4.3 SignedInfo元素

The structure of SignedInfo includes the canonicalization algorithm, a signature algorithm, and one or more references. The SignedInfo element may contain an optional ID attribute that will allow it to be referenced by other signatures and objects.

SignedInfo的结构包括规范化算法、签名算法和一个或多个引用。SignedInfo元素可能包含一个可选的ID属性,该属性允许其他签名和对象引用它。

SignedInfo does not include explicit signature or digest properties (such as calculation time, cryptographic device serial number, etc.). If an application needs to associate properties with the signature or digest, it may include such information in a SignatureProperties element within an Object element. Schema Definition:

SignedInfo不包括显式签名或摘要属性(如计算时间、加密设备序列号等)。如果应用程序需要将属性与签名或摘要相关联,则可以在对象元素内的SignatureProperties元素中包含此类信息。架构定义:

      <element name="SignedInfo">
        <complexType>
          <sequence>
            <element ref="ds:CanonicalizationMethod"/>
            <element ref="ds:SignatureMethod"/>
            <element ref="ds:Reference" maxOccurs="unbounded"/>
          </sequence>
        
      <element name="SignedInfo">
        <complexType>
          <sequence>
            <element ref="ds:CanonicalizationMethod"/>
            <element ref="ds:SignatureMethod"/>
            <element ref="ds:Reference" maxOccurs="unbounded"/>
          </sequence>
        

<attribute name="Id" type="ID" use="optional"/> </complexType> </element> DTD:

<attribute name=“Id”type=“Id”use=“optional”/></complexType></element>DTD:

      <!ELEMENT SignedInfo (CanonicalizationMethod,
             SignatureMethod,  Reference+)  >
   <!ATTLIST SignedInfo
             Id  ID      #IMPLIED>
        
      <!ELEMENT SignedInfo (CanonicalizationMethod,
             SignatureMethod,  Reference+)  >
   <!ATTLIST SignedInfo
             Id  ID      #IMPLIED>
        
4.3.1 The CanonicalizationMethod Element
4.3.1 规范化方法元素

CanonicalizationMethod is a required element that specifies the canonicalization algorithm applied to the SignedInfo element prior to performing signature calculations. This element uses the general structure for algorithms described in Algorithm Identifiers and Implementation Requirements (section 6.1). Implementations MUST support the REQUIRED Canonical XML [XML-C14N] method.

CanonicalizationMethod是一个必需元素,指定在执行签名计算之前应用于SignedInfo元素的规范化算法。该元素使用算法标识符和实现要求(第6.1节)中描述的算法的一般结构。实现必须支持所需的规范XML[XML-C14N]方法。

Alternatives to the REQUIRED Canonical XML algorithm (section 6.5.2), such as Canonical XML with Comments (section 6.5.2) and Minimal Canonicalization (the CRLF and charset normalization specified in section 6.5.1), may be explicitly specified but are NOT REQUIRED. Consequently, their use may not interoperate with other applications that do no support the specified algorithm (see XML Canonicalization and Syntax Constraint Considerations, section 7). Security issues may also arise in the treatment of entity processing and comments if minimal or other non-XML aware canonicalization algorithms are not properly constrained (see section 8.2: Only What is "Seen" Should be Signed).

可以明确指定所需规范化XML算法(第6.5.2节)的替代方案,例如带注释的规范化XML(第6.5.2节)和最小规范化(第6.5.1节中规定的CRLF和字符集规范化),但不是必需的。因此,它们的使用可能无法与不支持指定算法的其他应用程序进行互操作(请参阅XML规范化和语法约束注意事项,第7节)。如果最小或其他不支持XML的规范化算法没有得到适当的约束,那么在处理实体处理和注释时也可能会出现安全问题(请参阅第8.2节:只对“看到的”进行签名)。

The way in which the SignedInfo element is presented to the canonicalization method is dependent on that method. The following applies to the two types of algorithms specified by this document:

SignedInfo元素呈现给规范化方法的方式取决于该方法。以下内容适用于本文件规定的两种算法:

* Canonical XML [XML-C14N] (with or without comments) implementation MUST be provided with an XPath node-set originally formed from the document containing the SignedInfo and currently indicating the SignedInfo, its descendants, and the attribute and namespace nodes of SignedInfo and its descendant elements (such that the namespace context and similar ancestor information of the SignedInfo is preserved).

* 规范XML[XML-C14N](带或不带注释)实现必须提供一个XPath节点集,该节点集最初由包含SignedInfo的文档构成,当前表示SignedInfo、其子体以及SignedInfo及其子体元素的属性和命名空间节点(以便保留SignedInfo的命名空间上下文和类似祖先信息)。

* Minimal canonicalization implementations MUST be provided with the octets that represent the well-formed SignedInfo element, from the first character to the last character of the XML representation, inclusive. This includes the entire text of

* 最小规范化实现必须与表示格式良好的SignedInfo元素的八位字节一起提供,从XML表示的第一个字符到最后一个字符,包括在内。这包括本报告的全文

the start and end tags of the SignedInfo element as well as all descendant markup and character data (i.e., the text) between those tags.

SignedInfo元素的开始和结束标记以及这些标记之间的所有子体标记和字符数据(即文本)。

We RECOMMEND that resource constrained applications that do not implement the Canonical XML [XML-C14N] algorithm and instead choose minimal canonicalization (or some other form) be implemented to generate Canonical XML as their output serialization so as to easily mitigate some of these interoperability and security concerns. (While a result might not be the canonical form of the original, it can still be in canonical form.) For instance, such an implementation SHOULD (at least) generate standalone XML instances [XML]. Schema Definition:

我们建议,不实现规范化XML[XML-C14N]算法而选择最小规范化(或其他形式)的资源受限应用程序应实现,以生成规范化XML作为其输出序列化,从而轻松缓解一些互操作性和安全问题。(虽然结果可能不是原始结果的标准形式,但仍然可以是标准形式。)例如,这样的实现应该(至少)生成独立的XML实例[XML]。架构定义:

<element name="CanonicalizationMethod"> <complexType> <sequence> <any namespace="##any" minOccurs="0" maxOccurs="unbounded"/> </sequence> <attribute name="Algorithm" type="uriReference" use="required"/> </complexType> </element> DTD:

<element name=“CanonicalizationMethod”><complexType><sequence><anynamespace=“##any”minOccurs=“0”maxocurs=“unbounded”/></sequence><attribute name=“Algorithm”type=“uriReference”use=“required”/></complexType><DTD:

   <!ELEMENT CanonicalizationMethod %Method.ANY; >
   <!ATTLIST CanonicalizationMethod
             Algorithm CDATA #REQUIRED >
        
   <!ELEMENT CanonicalizationMethod %Method.ANY; >
   <!ATTLIST CanonicalizationMethod
             Algorithm CDATA #REQUIRED >
        
4.3.2 The SignatureMethod Element
4.3.2 符号方法元素

SignatureMethod is a required element that specifies the algorithm used for signature generation and validation. This algorithm identifies all cryptographic functions involved in the signature operation (e.g., hashing, public key algorithms, MACs, padding, etc.). This element uses the general structure here for algorithms described in section 6.1: Algorithm Identifiers and Implementation Requirements. While there is a single identifier, that identifier may specify a format containing multiple distinct signature values. Schema Definition:

SignatureMethod是指定用于签名生成和验证的算法的必需元素。该算法识别签名操作中涉及的所有加密函数(例如,哈希、公钥算法、MAC、填充等)。此元素使用第6.1节:算法标识符和实现要求中描述的算法的一般结构。虽然只有一个标识符,但该标识符可以指定包含多个不同签名值的格式。架构定义:

   <element name="SignatureMethod">
     <complexType>
       <sequence>
         <any namespace="##any" minOccurs="0" maxOccurs="unbounded"/>
       </sequence>
       <attribute name="Algorithm" type="uriReference" use="required"/>
      </complexType>
        
   <element name="SignatureMethod">
     <complexType>
       <sequence>
         <any namespace="##any" minOccurs="0" maxOccurs="unbounded"/>
       </sequence>
       <attribute name="Algorithm" type="uriReference" use="required"/>
      </complexType>
        

</element> DTD:

</element>DTD:

   <!ELEMENT SignatureMethod %Method.ANY; >
   <!ATTLIST SignatureMethod
             Algorithm CDATA #REQUIRED >
        
   <!ELEMENT SignatureMethod %Method.ANY; >
   <!ATTLIST SignatureMethod
             Algorithm CDATA #REQUIRED >
        
4.3.3 The Reference Element
4.3.3 参考元素

Reference is an element that may occur one or more times. It specifies a digest algorithm and digest value, and optionally an identifier of the object being signed, the type of the object, and/or a list of transforms to be applied prior to digesting. The identification (URI) and transforms describe how the digested content (i.e., the input to the digest method) was created. The Type attribute facilitates the processing of referenced data. For example, while this specification makes no requirements over external data, an application may wish to signal that the referent is a Manifest. An optional ID attribute permits a Reference to be referenced from elsewhere. Schema Definition:

引用是可能出现一次或多次的元素。它指定摘要算法和摘要值,还可以指定要签名的对象的标识符、对象的类型和/或要在摘要之前应用的转换列表。标识(URI)和转换描述了摘要内容(即摘要方法的输入)是如何创建的。Type属性有助于处理引用的数据。例如,虽然本规范对外部数据没有任何要求,但应用程序可能希望发出引用对象是清单的信号。可选的ID属性允许从其他地方引用引用。架构定义:

<element name="Reference"> <complexType> <sequence> <element ref="ds:Transforms" minOccurs="0"/> <element ref="ds:DigestMethod"/> <element ref="ds:DigestValue"/> </sequence> <attribute name="Id" type="ID" use="optional"/> <attribute name="URI" type="uriReference" use="optional"/> <attribute name="Type" type="uriReference" use="optional"/> </complexType> </element> DTD:

<element name=“Reference”><complexType><sequence><element ref=“ds:Transforms”minOccurs=“0”/><element ref=“ds:DigestMethod”/><element ref=“ds:DigestValue”/><sequence><attribute name=“Id”type=“Id”use=“optional”/><attribute name=“URI”type=“uriReference”use=“optional”/></complexType></element>DTD:

   <!ELEMENT Reference (Transforms?, DigestMethod, DigestValue)  >
   <!ATTLIST Reference
             Id     ID  #IMPLIED
             URI    CDATA   #IMPLIED
             Type   CDATA   #IMPLIED >
        
   <!ELEMENT Reference (Transforms?, DigestMethod, DigestValue)  >
   <!ATTLIST Reference
             Id     ID  #IMPLIED
             URI    CDATA   #IMPLIED
             Type   CDATA   #IMPLIED >
        
4.3.3.1 The URI Attribute
4.3.3.1 URI属性

The URI attribute identifies a data object using a URI-Reference, as specified by RFC2396 [URI]. The set of allowed characters for URI attributes is the same as for XML, namely [Unicode]. However, some Unicode characters are disallowed from URI references including all

URI属性使用由RFC2396[URI]指定的URI引用标识数据对象。URI属性允许的字符集与XML相同,即[Unicode]。但是,URI引用中不允许使用某些Unicode字符,包括所有

non-ASCII characters and the excluded characters listed in RFC2396 [URI, section 2.4]. However, the number sign (#), percent sign (%), and square bracket characters re-allowed in RFC 2732 [URI-Literal] are permitted. Disallowed characters must be escaped as follows:

RFC2396[URI,第2.4节]中列出的非ASCII字符和排除字符。但是,RFC2732[URI Literal]中重新允许的数字符号(#)、百分号(%)和方括号字符是允许的。不允许的字符必须按如下方式转义:

1. Each disallowed character is converted to [UTF-8] as one or more bytes. 2. Any octets corresponding to a disallowed character are escaped with the URI escaping mechanism (that is, converted to %HH, where HH is the hexadecimal notation of the byte value). 3. The original character is replaced by the resulting character sequence.

1. 每个不允许的字符都将转换为[UTF-8]作为一个或多个字节。2.与不允许的字符对应的任何八位字节都使用URI转义机制进行转义(即,转换为%HH,其中HH是字节值的十六进制表示法)。3.原始字符将替换为生成的字符序列。

XML signature applications MUST be able to parse URI syntax. We RECOMMEND they be able to dereference URIs in the HTTP scheme. Dereferencing a URI in the HTTP scheme MUST comply with the Status Code Definitions of [HTTP] (e.g., 302, 305 and 307 redirects are followed to obtain the entity-body of a 200 status code response). Applications should also be cognizant of the fact that protocol parameter and state information, (such as a HTTP cookies, HTML device profiles or content negotiation), may affect the content yielded by dereferencing a URI.

XML签名应用程序必须能够解析URI语法。我们建议他们能够在HTTP方案中取消对URI的引用。在HTTP方案中取消对URI的引用必须符合[HTTP]的状态码定义(例如,遵循302、305和307重定向以获得200状态码响应的实体体)。应用程序还应该认识到,协议参数和状态信息(如HTTP cookies、HTML设备配置文件或内容协商)可能会影响通过取消引用URI生成的内容。

If a resource is identified by more than one URI, the most specific should be used (e.g. http://www.w3.org/2000/06/interop-pressrelease.html.en instead of http://www.w3.org/2000/06/interop-pressrelease). (See the Reference Validation (section 3.2.1) for a further information on reference processing.)

如果一个资源由多个URI标识,则应使用最具体的URI(例如。http://www.w3.org/2000/06/interop-pressrelease.html.en 而不是http://www.w3.org/2000/06/interop-pressrelease). (参考验证(第3.2.1节)了解参考处理的更多信息。)

If the URI attribute is omitted altogether, the receiving application is expected to know the identity of the object. For example, a lightweight data protocol might omit this attribute given the identity of the object is part of the application context. This attribute may be omitted from at most one Reference in any particular SignedInfo, or Manifest.

如果URI属性被完全省略,那么接收应用程序应该知道对象的标识。例如,如果对象的标识是应用程序上下文的一部分,轻量级数据协议可能会忽略此属性。在任何特定的SignedInfo或Manifest中,最多可以从一个引用中忽略此属性。

The optional Type attribute contains information about the type of object being signed. This is represented as a URI. For example:

可选类型属性包含有关要签名的对象类型的信息。这表示为URI。例如:

   Type="http://www.w3.org/2000/09/xmldsig#Object"
   Type="http://www.w3.org/2000/09/xmldsig#Manifest"
        
   Type="http://www.w3.org/2000/09/xmldsig#Object"
   Type="http://www.w3.org/2000/09/xmldsig#Manifest"
        

The Type attribute applies to the item being pointed at, not its contents. For example, a reference that identifies an Object element containing a SignatureProperties element is still of type #Object. The type attribute is advisory. No validation of the type information is required by this specification.

Type属性应用于所指向的项,而不是其内容。例如,标识包含SignatureProperties元素的Object元素的引用仍然是#Object类型。type属性是advical。本规范不要求验证类型信息。

4.3.3.2 The Reference Processing Model
4.3.3.2 参考处理模型

Note: XPath is RECOMMENDED. Signature applications need not conform to [XPath] specification in order to conform to this specification. However, the XPath data model, definitions (e.g., node-sets) and syntax is used within this document in order to describe functionality for those that want to process XML-as-XML (instead of octets) as part of signature generation. For those that want to use these features, a conformant [XPath] implementation is one way to implement these features, but it is not required. Such applications could use a sufficiently functional replacement to a node-set and implement only those XPath expression behaviors REQUIRED by this specification. However, for simplicity we generally will use XPath terminology without including this qualification on every point. Requirements over "XPath nodesets" can include a node-set functional equivalent. Requirements over XPath processing can include application behaviors that are equivalent to the corresponding XPath behavior.

注意:建议使用XPath。签名应用程序无需符合[XPath]规范即可符合此规范。但是,本文档中使用了XPath数据模型、定义(例如,节点集)和语法,以便为那些希望将XML作为XML(而不是八位字节)处理作为签名生成的一部分的人描述功能。对于那些想要使用这些特性的人,一致的[XPath]实现是实现这些特性的一种方法,但不是必需的。这样的应用程序可以对节点集进行功能充分的替换,并且只实现本规范所要求的那些XPath表达式行为。然而,为了简单起见,我们通常使用XPath术语,而不在每一点上都包含这种限定。“XPath节点集”上的需求可以包括一个节点集功能等价物。XPath处理的需求可以包括与相应XPath行为等效的应用程序行为。

The data-type of the result of URI dereferencing or subsequent Transforms is either an octet stream or an XPath node-set.

URI解引用或后续转换结果的数据类型为八位字节流或XPath节点集。

The Transforms specified in this document are defined with respect to the input they require. The following is the default signature application behavior:

本文档中指定的转换是根据它们所需的输入定义的。以下是默认签名应用程序行为:

* If the data object is a an octet stream and the next transformrequires a node-set, the signature application MUST attempt to parse the octets.

* 如果数据对象是八位字节流,并且下一个转换需要节点集,则签名应用程序必须尝试解析八位字节。

* If the data object is a node-set and the next transformrequires octets, the signature application MUST attempt to convert the node-set to an octet stream using the REQUIRED canonicalization algorithm [XML-C14N].

* 如果数据对象是节点集,并且下一个转换需要八位字节,则签名应用程序必须尝试使用所需的规范化算法[XML-C14N]将节点集转换为八位字节流。

Users may specify alternative transforms that over-ride these defaults in transitions between Transforms that expect different inputs. The final octet stream contains the data octets being secured. The digest algorithm specified by DigestMethod is then applied to these data octets, resulting in the DigestValue.

用户可以指定替代变换,在期望不同输入的变换之间的转换中超越这些默认值。最后一个八位字节流包含被保护的数据八位字节。然后将DigestMethod指定的摘要算法应用于这些数据八位字节,得到DigestValue。

Unless the URI-Reference is a 'same-document' reference as defined in [URI, Section 4.2], the result of dereferencing the URI-Reference MUST be an octet stream. In particular, an XML document identified by URI is not parsed by the signature application unless the URI is a same-document reference or unless a transformthat requires XML parsing is applied (See Transforms (section 4.3.3.1).)

除非URI引用是[URI,第4.2节]中定义的“同一文档”引用,否则取消引用URI引用的结果必须是八位字节流。特别是,签名应用程序不会解析由URI标识的XML文档,除非URI是相同的文档引用,或者除非应用了需要XML解析的转换(请参见转换(第4.3.3.1节))

When a fragment is preceded by an absolute or relative URI in the URI-Reference, the meaning of the fragment is defined by the resource's MIME type. Even for XML documents, URI dereferencing (including the fragment processing) might be done for the signature application by a proxy. Therefore, reference validation might fail if fragment processing is not performed in a standard way (as defined in the following section for same-document references). Consequently, we RECOMMEND that the URI attribute not include fragment identifiers and that such processing be specified as an additional XPath Transform.

当URI引用中的片段前面有绝对或相对URI时,该片段的含义由资源的MIME类型定义。即使对于XML文档,URI取消引用(包括片段处理)也可以通过代理为签名应用程序完成。因此,如果未以标准方式执行片段处理(如以下章节中针对相同文档引用的定义),则引用验证可能会失败。因此,我们建议URI属性不包括片段标识符,并将此类处理指定为附加的XPath转换。

When a fragment is not preceded by a URI in the URI-Reference, XML signature applications MUST support the null URI and barename XPointer. We RECOMMEND support for the same-document XPointers '#xpointer(/)' and '#xpointer(id("ID"))' if the application also intends to support Minimal Canonicalization or Canonical XML with Comments. (Otherwise URI="#foo" will automatically remove comments before the Canonical XML with Comments can even be invoked.) All other support for XPointers is OPTIONAL, especially all support for barename and other XPointers in external resources since the application may not have control over how the fragment is generated (leading to interoperability problems and validation failures).

当URI引用中的片段前面没有URI时,XML签名应用程序必须支持null URI和barename XPointer。如果应用程序还打算支持最小规范化或带注释的规范化XML,我们建议支持相同的文档xpointer“#xpointer(/)”和“#xpointer(id)(“id”)”。(否则URI=“#foo”将在调用带有注释的规范XML之前自动删除注释。)对XPointers的所有其他支持都是可选的,尤其是在外部资源中对barename和其他XPointers的所有支持,因为应用程序可能无法控制片段的生成方式(导致互操作性问题和验证失败)。

The following examples demonstrate what the URI attribute identifies and how it is dereferenced:

以下示例演示URI属性标识的内容以及如何取消引用该属性:

URI="http://example.com/bar.xml" Identifies the octets that represent the external resource 'http//example.com/bar.xml', that is probably XML document given its file extension.

URI=”http://example.com/bar.xml标识表示外部资源“http//example.com/bar.xml”的八位字节,该资源可能是给定文件扩展名的xml文档。

URI="http://example.com/bar.xml#chapter1" Identifies the element with ID attribute value 'chapter1' of the external XML resource 'http://example.com/bar.xml', provided as an octet stream. Again, for the sake of interoperability, the element identified as 'chapter1' should be obtained using an XPath transformrather than a URI fragment (barename XPointer resolution in external resources is not REQUIRED in this specification).

URI=”http://example.com/bar.xml#chapter1“使用外部XML资源的ID属性值'chapter1'标识元素”http://example.com/bar.xml,作为八位元流提供。同样,出于互操作性的考虑,标识为“chapter1”的元素应该使用XPath转换而不是URI片段来获得(本规范中不需要外部资源中的裸名XPointer解析)。

URI="" Identifies the nodeset (minus any comment nodes) of the XML resource containing the signature

URI=”“标识包含签名的XML资源的节点集(减去任何注释节点)

URI="#chapter1" Identifies a nodeset containing the element with ID attribute value 'chapter1' of the XML resource containing the signature. XML Signature (and its applications) modify this nodeset to include the element plus all descendents including namespaces and attributes -- but not comments.

URI=“#chapter1”标识包含元素的节点集,该元素的ID属性值为包含签名的XML资源的“chapter1”。XML签名(及其应用程序)修改此节点集以包含元素和所有子代,包括名称空间和属性,但不包括注释。

4.3.3.3 Same-Document URI-References
4.3.3.3 相同的文档URI引用

Dereferencing a same-document reference MUST result in an XPath node-set suitable for use by Canonical XML. Specifically, dereferencing a null URI (URI="") MUST result in an XPath node-set that includes every non-comment node of the XML document containing the URI attribute. In a fragment URI, the characters after the number sign ('#') character conform to the XPointer syntax [Xptr]. When processing an XPointer, the application MUST behave as if the root node of the XML document containing the URI attribute were used to initialize the XPointer evaluation context. The application MUST behave as if the result of XPointer processing were a node-set derived from the resultant location-set as follows:

取消引用同一文档引用必须生成适合规范XML使用的XPath节点集。具体地说,取消对空URI(URI=”“)的引用必须生成一个XPath节点集,其中包含包含URI属性的XML文档的每个非注释节点。在片段URI中,数字符号(“#”)字符后面的字符符合XPointer语法[Xptr]。处理XPointer时,应用程序的行为必须与包含URI属性的XML文档的根节点用于初始化XPointer计算上下文的行为相同。应用程序的行为必须如同XPointer处理的结果是从结果位置集派生的节点集,如下所示:

1. discard point nodes 2. replace each range node with all XPath nodes having full or partial content within the range 3. replace the root node with its children (if it is in the node-set) 4. replace any element node E with E plus all descendants of E (text, comment, PI, element) and all namespace and attribute nodes of E and its descendant elements. 5. if the URI is not a full XPointer, then delete all comment nodes

1. 放弃点节点2。将每个范围节点替换为范围3内具有全部或部分内容的所有XPath节点。将根节点替换为其子节点(如果在节点集中)4。将任何元素节点E替换为E加上E的所有子元素(文本、注释、PI、元素)以及E及其子元素的所有命名空间和属性节点。5.如果URI不是完整的XPointer,则删除所有注释节点

The second to last replacement is necessary because XPointer typically indicates a subtree of an XML document's parse tree using just the element node at the root of the subtree, whereas Canonical XML treats a node-set as a set of nodes in which absence of descendant nodes results in absence of their representative text from the canonical form.

从第二个到最后一个替换是必要的,因为XPointer通常只使用子树根上的元素节点来指示XML文档解析树的子树,而规范XML将节点集视为一组节点,在这些节点中,缺少子节点会导致缺少规范形式中的代表性文本。

The last step is performed for null URIs, barename XPointers and child sequence XPointers. To retain comments while selecting an element by an identifier ID, use the following full XPointer: URI='#xpointer(id("ID"))'. To retain comments while selecting the entire document, use the following full XPointer: URI='#xpointer(/)'. This XPointer contains a simple XPath expression that includes the root node, which the second to last step above replaces with all nodes of the parse tree (all descendants, plus all attributes, plus all namespaces nodes).

最后一步是针对空URI、裸名XPointer和子序列XPointer执行的。要在通过标识符ID选择元素时保留注释,请使用以下完整的XPointer:URI=“#XPointer(ID(“ID”)”)。要在选择整个文档时保留注释,请使用以下完整XPointer:URI='#XPointer(/)'。这个XPointer包含一个简单的XPath表达式,其中包括根节点,上面倒数第二步将其替换为解析树的所有节点(所有子体、所有属性和所有名称空间节点)。

4.3.3.4 The Transforms Element
4.3.3.4 转换元素

The optional Transforms element contains an ordered list of Transform elements; these describe how the signer obtained the data object that was digested. The output of each Transform serves as input to the next Transform. The input to the first Transform is the result of dereferencing the URI attribute of the Reference element. The output from the last Transform is the input for the DigestMethod algorithm. When transforms are applied the signer is not signing the native (original) document but the resulting (transformed) document. (See Only What is Signed is Secure (section 8.1).)

可选的Transforms元素包含一个有序的Transform元素列表;这些描述了签名者如何获得已摘要的数据对象。每个变换的输出用作下一个变换的输入。第一个转换的输入是取消引用元素的URI属性引用的结果。最后一次变换的输出是DigestMethod算法的输入。应用转换时,签名者不是对本机(原始)文档进行签名,而是对生成的(转换)文档进行签名。(仅参见已签名的内容是安全的(第8.1节)。)

Each Transform consists of an Algorithm attribute and content parameters, if any, appropriate for the given algorithm. The Algorithm attribute value specifies the name of the algorithm to be performed, and the Transform content provides additional data to govern the algorithm's processing of the transform input. (See Algorithm Identifiers and Implementation Requirements (section 6).)

每个变换由一个算法属性和内容参数(如果有)组成,适用于给定的算法。“算法”属性值指定要执行的算法的名称,变换内容提供附加数据以控制算法对变换输入的处理。(参见算法标识符和实现要求(第6节)。)

As described in The Reference Processing Model (section 4.3.3.2), some transforms take an XPath node-set as input, while others require an octet stream. If the actual input matches the input needs of the transform, then the transform operates on the unaltered input. If the transform input requirement differs from the format of the actual input, then the input must be converted.

如参考处理模型(第4.3.3.2节)所述,一些转换将XPath节点集作为输入,而其他转换则需要八位字节流。如果实际输入与转换的输入需求相匹配,则转换将对未更改的输入进行操作。如果转换输入要求与实际输入的格式不同,则必须转换输入。

Some Transform may require explicit MIME type, charset (IANA registered "character set"), or other such information concerning the data they are receiving from an earlier Transform or the source data, although no Transform algorithm specified in this document needs such explicit information. Such data characteristics are provided as parameters to the Transform algorithm and should be described in the specification for the algorithm.

某些转换可能需要明确的MIME类型、字符集(IANA注册的“字符集”)或其他此类信息,这些信息与从早期转换接收的数据或源数据有关,尽管本文档中指定的转换算法不需要此类明确信息。此类数据特征作为变换算法的参数提供,并应在算法规范中描述。

Examples of transforms include but are not limited to base64 decoding [MIME], canonicalization [XML-C14N], XPath filtering [XPath], and XSLT [XSLT]. The generic definition of the Transform element also allows application-specific transform algorithms. For example, the transform could be a decompression routine given by a Java class appearing as a base64 encoded parameter to a Java Transform algorithm. However, applications should refrain from using application-specific transforms if they wish their signatures to be verifiable outside of their application domain. Transform Algorithms (section 6.6) defines the list of standard transformations. Schema Definition:

转换的示例包括但不限于base64解码[MIME]、规范化[XML-C14N]、XPath过滤[XPath]和XSLT[XSLT]。Transform元素的通用定义还允许应用程序特定的转换算法。例如,转换可以是Java类作为base64编码参数提供给Java转换算法的解压缩例程。但是,如果应用程序希望其签名在其应用程序域之外可验证,则应避免使用特定于应用程序的转换。转换算法(第6.6节)定义了标准转换列表。架构定义:

<element name="Transforms">
  <complexType>
    <sequence>
      <element ref="ds:Transform" maxOccurs="unbounded"/>
    </sequence>
  </complexType>
</element>
        
<element name="Transforms">
  <complexType>
    <sequence>
      <element ref="ds:Transform" maxOccurs="unbounded"/>
    </sequence>
  </complexType>
</element>
        

<element name="Transform"> <complexType> <choice maxOccurs="unbounded"> <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/> <element name="XSLT" type="string"/> <!-- should be an xsl:stylesheet element --> <element name="XPath" type="string"/> </choice> <attribute name="Algorithm" type="uriReference" use="required"/> </complexType> </element> DTD:

<element name=“Transform”><complexType><choice maxocurs=“unbounded”><anynamespace=“##其他”processContents=“lax”minOccurs=“0”maxocurs=“unbounded”/><element name=“XSLT”type=“string”/><!--应该是xsl:stylesheet元素--><element name=“XPath”type=“string”/></choice><attribute name=“Algorithm”type=“uriReference”use=“required”/></complexType></element>DTD:

<!ELEMENT Transforms (Transform+)>
        
<!ELEMENT Transforms (Transform+)>
        
<!ELEMENT Transform %Transform.ANY; >
<!ATTLIST Transform
          Algorithm    CDATA    #REQUIRED >
        
<!ELEMENT Transform %Transform.ANY; >
<!ATTLIST Transform
          Algorithm    CDATA    #REQUIRED >
        
<!ELEMENT XPath (#PCDATA) >
<!ELEMENT XSLT (#PCDATA) >
        
<!ELEMENT XPath (#PCDATA) >
<!ELEMENT XSLT (#PCDATA) >
        
4.3.3.5 The DigestMethod Element
4.3.3.5 DigestMethod元素

DigestMethod is a required element that identifies the digest algorithm to be applied to the signed object. This element uses the general structure here for algorithms specified in Algorithm Identifiers and Implementation Requirements (section 6.1).

DigestMethod是一个必需元素,用于标识要应用于签名对象的摘要算法。该元素使用此处算法标识符和实现要求(第6.1节)中规定的算法的一般结构。

If the result of the URI dereference and application of Transforms is an XPath node-set (or sufficiently functional replacement implemented by the application) then it must be converted as described in the Reference Processing Model (section 4.3.3.2). If the result of URI dereference and application of Transforms is an octet stream, then no conversion occurs (comments might be present if the Minimal Canonicalization or Canonical XML with Comments was specified in the Transforms). The digest algorithm is applied to the data octets of the resulting octet stream. Schema Definition:

如果URI取消引用和应用转换的结果是XPath节点集(或应用程序实现的功能充分的替换),则必须按照引用处理模型(第4.3.3.2节)中的描述对其进行转换。如果URI取消引用和应用转换的结果是八位字节流,则不会发生转换(如果在转换中指定了最小规范化或带注释的规范化XML,则可能会出现注释)。摘要算法应用于生成的八位字节流的数据八位字节。架构定义:

<element name="DigestMethod"> <complexType> <sequence> <any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/> </sequence> <attribute name="Algorithm" type="uriReference" use="required"/> </complexType> </element> DTD:

<element name=“DigestMethod”><complexType><sequence><any namespace=“##any”processContents=“lax”minOccurs=“0”maxOccurs=“unbounded”/></sequence><attribute name=“Algorithm”type=“uriReference”use=“required”/

   <!ELEMENT DigestMethod %Method.ANY; >
   <!ATTLIST DigestMethod
             Algorithm  CDATA   #REQUIRED >
        
   <!ELEMENT DigestMethod %Method.ANY; >
   <!ATTLIST DigestMethod
             Algorithm  CDATA   #REQUIRED >
        
4.3.3.6 The DigestValue Element
4.3.3.6 DigestValue元素

DigestValue is an element that contains the encoded value of the digest. The digest is always encoded using base64 [MIME]. Schema Definition:

DigestValue是包含摘要编码值的元素。摘要始终使用base64[MIME]进行编码。架构定义:

<element name="DigestValue" type="ds:CryptoBinary"/> DTD:

<element name=“DigestValue”type=“ds:CryptoBinary”/>DTD:

   <!ELEMENT DigestValue  (#PCDATA)  >
   <!-- base64 encoded digest value -->
        
   <!ELEMENT DigestValue  (#PCDATA)  >
   <!-- base64 encoded digest value -->
        
4.4 The KeyInfo Element
4.4 KeyInfo元素

KeyInfo is an optional element that enables the recipient(s) to obtain the key needed to validate the signature. KeyInfo may contain keys, names, certificates and other public key management information, such as in-band key distribution or key agreement data. This specification defines a few simple types but applications may place their own key identification and exchange semantics within this element type through the XML-namespace facility [XML-ns].

KeyInfo是一个可选元素,使收件人能够获得验证签名所需的密钥。KeyInfo可能包含密钥、名称、证书和其他公钥管理信息,例如带内密钥分发或密钥协议数据。该规范定义了一些简单的类型,但是应用程序可以通过XML名称空间工具[XML ns]在该元素类型中放置它们自己的密钥标识和交换语义。

If KeyInfo is omitted, the recipient is expected to be able to identify the key based on application context information. Multiple declarations within KeyInfo refer to the same key. While applications may define and use any mechanism they choose through inclusion of elements from a different namespace, compliant versions MUST implement KeyValue (section 4.4.2) and SHOULD implement RetrievalMethod (section 4.4.3).

如果省略了KeyInfo,则收件人应能够根据应用程序上下文信息识别密钥。KeyInfo中的多个声明引用同一个键。虽然应用程序可以通过包含来自不同名称空间的元素来定义和使用它们选择的任何机制,但兼容版本必须实现KeyValue(第4.4.2节),并且应该实现RetrievalMethod(第4.4.3节)。

The following list summarizes the KeyInfo types defined by this specification; these can be used within the RetrievalMethod Type attribute to describe the remote KeyInfo structure as represented as an octect stream.

以下列表总结了本规范定义的KeyInfo类型;可以在RetrievalMethod类型属性中使用这些属性来描述表示为八分位流的远程KeyInfo结构。

* http://www.w3.org/2000/09/xmldsig#X509Data * http://www.w3.org/2000/09/xmldsig#PGPData * http://www.w3.org/2000/09/xmldsig#SPKIData * http://www.w3.org/2000/09/xmldsig#MgmtData

* http://www.w3.org/2000/09/xmldsig#X509Data * http://www.w3.org/2000/09/xmldsig#PGPData * http://www.w3.org/2000/09/xmldsig#SPKIData * http://www.w3.org/2000/09/xmldsig#MgmtData

In addition to the types above for which we define structures, we specify one additional type to indicate a binary X.509 Certificate

除了上面定义结构的类型之外,我们还指定了一个额外的类型来表示二进制X.509证书

* http://www.w3.org/2000/09/xmldsig#rawX509Certificate

* http://www.w3.org/2000/09/xmldsig#rawX509Certificate

Schema Definition:

架构定义:

<element name="KeyInfo"> <complexType> <choice maxOccurs="unbounded"> <any processContents="lax" namespace="##other" minOccurs="0" maxOccurs="unbounded"/> <element name="KeyName" type="string"/> <element ref="ds:KeyValue"/> <element ref="ds:RetrievalMethod"/> <element ref="ds:X509Data"/> <element ref="ds:PGPData"/> <element ref="ds:SPKIData"/> <element name="MgmtData" type="string"/> </choice> <attribute name="Id" type="ID" use="optional"/> </complexType> </element> DTD:

<element name=“KeyInfo”><complexType><choice maxocurs=“unbounded”><any processContents=“lax”namespace=“##其他”minocurs=“0”maxocurs=“unbounded”/><element name=“KeyName”type=“string”/><element ref=“ds:KeyValue”/><element ref=“ds:X509Data”//><element name=“MgmtData”type=“string”/></choice><attribute name=“Id”type=“Id”use=“optional”/></complexType></element>DTD:

<!ELEMENT KeyInfo %Key.ANY; >
<!ATTLIST KeyInfo
          Id ID  #IMPLIED >
        
<!ELEMENT KeyInfo %Key.ANY; >
<!ATTLIST KeyInfo
          Id ID  #IMPLIED >
        
4.4.1 The KeyName Element
4.4.1 KeyName元素

The KeyName element contains a string value which may be used by the signer to communicate a key identifier to the recipient. Typically, KeyName contains an identifier related to the key pair used to sign the message, but it may contain other protocol-related information that indirectly identifies a key pair. (Common uses of KeyName include simple string names for keys, a key index, a distinguished name (DN), an email address, etc.)

KeyName元素包含一个字符串值,签名者可以使用该字符串值将密钥标识符传递给接收者。通常,KeyName包含与用于对消息签名的密钥对相关的标识符,但它可能包含间接标识密钥对的其他协议相关信息。(KeyName的常见用法包括键的简单字符串名称、键索引、可分辨名称(DN)、电子邮件地址等。)

Schema Definition:

架构定义:

<!-- type declared in KeyInfo --> DTD:

<!-- 在KeyInfo-->DTD中声明的类型:

   <!ELEMENT KeyName (#PCDATA) >
        
   <!ELEMENT KeyName (#PCDATA) >
        
4.4.2 The KeyValue Element
4.4.2 键值元素

The KeyValue element contains a single public key that may be useful in validating the signature. Structured formats for defining DSA (REQUIRED) and RSA (RECOMMENDED) public keys are defined in Signature Algorithms (section 6.4). Schema Definition:

KeyValue元素包含一个公钥,该公钥在验证签名时可能很有用。签名算法(第6.4节)中定义了用于定义DSA(必需)和RSA(推荐)公钥的结构化格式。架构定义:

   <element name="KeyValue">
     <complexType mixed="true">
       <choice>
         <any namespace="##other" processContents="lax" minOccurs="0"
          maxOccurs="unbounded"/>
         <element ref="ds:DSAKeyValue"/>
         <element ref="ds:RSAKeyValue"/>
       </choice>
     </complexType>
   </element>
        
   <element name="KeyValue">
     <complexType mixed="true">
       <choice>
         <any namespace="##other" processContents="lax" minOccurs="0"
          maxOccurs="unbounded"/>
         <element ref="ds:DSAKeyValue"/>
         <element ref="ds:RSAKeyValue"/>
       </choice>
     </complexType>
   </element>
        
   DTD:
   <!ELEMENT KeyValue    %Key.ANY; >
        
   DTD:
   <!ELEMENT KeyValue    %Key.ANY; >
        
4.4.3 The RetrievalMethod Element
4.4.3 RetrievalMethod元素

A RetrievalMethod element within KeyInfo is used to convey a reference to KeyInfo information that is stored at another location. For example, several signatures in a document might use a key verified by an X.509v3 certificate chain appearing once in the document or remotely outside the document; each signature's KeyInfo can reference this chain using a single RetrievalMethod element instead of including the entire chain with a sequence of X509Certificate elements.

KeyInfo中的RetrievalMethod元素用于传递对存储在另一个位置的KeyInfo信息的引用。例如,文档中的多个签名可能使用一个密钥,该密钥由一个X.509v3证书链验证,该证书链在文档中出现一次或远程出现在文档之外;每个签名的KeyInfo可以使用单个RetrievalMethod元素引用此链,而不是使用X509Certificate元素序列包含整个链。

RetrievalMethod uses the same syntax and dereferencing behavior as Reference's URI (section 4.3.3.1) and The Reference Processing Model (section 4.3.3.2) except that there is no DigestMethod or DigestValue child elements and presence of the URI is mandatory. Note, if the result of dereferencing and transforming the specified URI is a node set, then it may need to be to be canonicalized. All of the KeyInfo types defined by this specification (section 4.4) represent octets,

RetrievalMethod使用与引用的URI(第4.3.3.1节)和引用处理模型(第4.3.3.2节)相同的语法和解引用行为,但不存在DigestMethod或DigestValue子元素,且URI的存在是强制性的。注意,如果取消引用和转换指定URI的结果是节点集,则可能需要对其进行规范化。本规范(第4.4节)定义的所有KeyInfo类型代表八位字节,

consequently the Signature application is expected to attempt to canonicalize the nodeset via the The Reference Processing Model (section 4.3.3.2)

因此,预计签名应用程序将尝试通过参考处理模型规范化节点集(第4.3.3.2节)

Type is an optional identifier for the type of data to be retrieved. Schema Definition

类型是要检索的数据类型的可选标识符。模式定义

   <element name="RetrievalMethod">
     <complexType>
       <sequence>
         <element ref="ds:Transforms" minOccurs="0"/>
       </sequence>
       <attribute name="URI" type="uriReference"/>
       <attribute name="Type" type="uriReference" use="optional"/>
     </complexType>
   </element>
   DTD
        
   <element name="RetrievalMethod">
     <complexType>
       <sequence>
         <element ref="ds:Transforms" minOccurs="0"/>
       </sequence>
       <attribute name="URI" type="uriReference"/>
       <attribute name="Type" type="uriReference" use="optional"/>
     </complexType>
   </element>
   DTD
        
   <!ELEMENT RetrievalMethod (Transforms?) >
   <!ATTLIST RetrievalMethod
             URI       CDATA   #REQUIRED
             Type      CDATA   #IMPLIED >
        
   <!ELEMENT RetrievalMethod (Transforms?) >
   <!ATTLIST RetrievalMethod
             URI       CDATA   #REQUIRED
             Type      CDATA   #IMPLIED >
        
4.4.4 The X509Data Element
4.4.4 X509数据元素
   Identifier
         Type="http://www.w3.org/2000/09/xmldsig#X509Data"
         (this can be used within a RetrievalMethod or Reference element
         to identify the referent's type)
        
   Identifier
         Type="http://www.w3.org/2000/09/xmldsig#X509Data"
         (this can be used within a RetrievalMethod or Reference element
         to identify the referent's type)
        

An X509Data element within KeyInfo contains one or more identifiers of keys or X509 certificates (or certificates' identifiers or revocation lists). Five types of X509Data are defined

KeyInfo中的X509数据元素包含密钥或X509证书(或证书的标识符或吊销列表)的一个或多个标识符。定义了五种类型的X509数据

1. The X509IssuerSerial element, which contains an X.509 issuer distinguished name/serial number pair that SHOULD be compliant with RFC2253 [LDAP-DN], 2. The X509SubjectName element, which contains an X.509 subject distinguished name that SHOULD be compliant with RFC2253 [LDAP-DN], 3. The X509SKI element, which contains an X.509 subject key identifier value. 4. The X509Certificate element, which contains a base64-encoded [X509v3] certificate, and 5. The X509CRL element, which contains a base64-encoded certificate revocation list (CRL) [X509v3].

1. X509IssuerSerial元素,其中包含一个X.509 issuer可分辨名称/序列号对,该对应符合RFC2253[LDAP-DN],2。X509SubjectName元素,其中包含一个X.509主题可分辨名称,该名称应符合RFC2253[LDAP-DN],3。X509SKI元素,其中包含一个X.509主题键标识符值。4.X509Certificate元素,其中包含base64编码的[X509v3]证书,以及5。X509CRL元素,其中包含base64编码的证书吊销列表(CRL)[X509v3]。

Multiple declarations about a single certificate (e.g., a X509SubjectName and X509IssuerSerial element) MUST be grouped inside a single X509Data element; multiple declarations about the same key but different certificates (related to that single key) MUST be grouped within a single KeyInfo element but MAY occur in multiple X509Data elements. For example, the following block contains two pointers to certificate-A (issuer/serial number and SKI) and a single reference to certificate-B (SubjectName) and also shows use of certificate elements

关于单个证书的多个声明(例如,X509SubjectName和X509IssuerSerial元素)必须分组在单个X509Data元素中;关于相同密钥但不同证书(与该单个密钥相关)的多个声明必须分组在单个KeyInfo元素中,但可能出现在多个X509Data元素中。例如,下面的块包含指向证书-A(颁发者/序列号和SKI)的两个指针和对证书-B(SubjectName)的一个引用,并且还显示了证书元素的使用

   <KeyInfo>
     <X509Data> <!-- two pointers to certificate-A -->
       <X509IssuerSerial>
         <X509IssuerName>CN=TAMURA Kent, OU=TRL, O=IBM,
           L=Yamato-shi, ST=Kanagawa, C=JP</X509IssuerName>
         <X509SerialNumber>12345678</X509SerialNumber>
       </X509IssuerSerial>
       <X509SKI>31d97bd7</X509SKI>
     </X509Data>
     <X509Data> <!-- single pointer to certificate-B -->
       <X509SubjectName>Subject of Certificate B</X509SubjectName>
     </X509Data> <!-- certificate chain -->
       <!--Signer cert, issuer CN=arbolCA,OU=FVT,O=IBM,C=US, serial 4-->
       <X509Certificate>MIICXTCCA..</X509Certificate>
       <!-- Intermediate cert subject CN=arbolCA,OU=FVTO=IBM,C=US
            issuer,CN=tootiseCA,OU=FVT,O=Bridgepoint,C=US -->
       <X509Certificate>MIICPzCCA...</X509Certificate>
       <!-- Root cert subject CN=tootiseCA,OU=FVT,O=Bridgepoint,C=US -->
       <X509Certificate>MIICSTCCA...</X509Certificate>
     </X509Data>
   </KeyInfo>
        
   <KeyInfo>
     <X509Data> <!-- two pointers to certificate-A -->
       <X509IssuerSerial>
         <X509IssuerName>CN=TAMURA Kent, OU=TRL, O=IBM,
           L=Yamato-shi, ST=Kanagawa, C=JP</X509IssuerName>
         <X509SerialNumber>12345678</X509SerialNumber>
       </X509IssuerSerial>
       <X509SKI>31d97bd7</X509SKI>
     </X509Data>
     <X509Data> <!-- single pointer to certificate-B -->
       <X509SubjectName>Subject of Certificate B</X509SubjectName>
     </X509Data> <!-- certificate chain -->
       <!--Signer cert, issuer CN=arbolCA,OU=FVT,O=IBM,C=US, serial 4-->
       <X509Certificate>MIICXTCCA..</X509Certificate>
       <!-- Intermediate cert subject CN=arbolCA,OU=FVTO=IBM,C=US
            issuer,CN=tootiseCA,OU=FVT,O=Bridgepoint,C=US -->
       <X509Certificate>MIICPzCCA...</X509Certificate>
       <!-- Root cert subject CN=tootiseCA,OU=FVT,O=Bridgepoint,C=US -->
       <X509Certificate>MIICSTCCA...</X509Certificate>
     </X509Data>
   </KeyInfo>
        

Note, there is no direct provision for a PKCS#7 encoded "bag" of certificates or CRLs. However, a set of certificates or a CRL can occur within an X509Data element and multiple X509Data elements can occur in a KeyInfo. Whenever multiple certificates occur in an X509Data element, at least one such certificate must contain the public key which verifies the signature. Schema Definition

注意,没有直接规定PKCS#7编码的证书或CRL“包”。但是,X509数据元素中可能会出现一组证书或CRL,而KeyInfo中可能会出现多个X509数据元素。每当X509Data元素中出现多个证书时,至少一个此类证书必须包含验证签名的公钥。模式定义

    <element name="X509Data">
       <complexType>
        <choice>
          <sequence maxOccurs="unbounded">
            <choice>
              <element ref="ds:X509IssuerSerial"/>
              <element name="X509SKI" type="ds:CryptoBinary"/>
              <element name="X509SubjectName" type="string"/>
        
    <element name="X509Data">
       <complexType>
        <choice>
          <sequence maxOccurs="unbounded">
            <choice>
              <element ref="ds:X509IssuerSerial"/>
              <element name="X509SKI" type="ds:CryptoBinary"/>
              <element name="X509SubjectName" type="string"/>
        
              <element name="X509Certificate" type="ds:CryptoBinary"/>
            </choice>
          </sequence>
          <element name="X509CRL" type="ds:CryptoBinary"/>
        </choice>
      </complexType>
    </element>
        
              <element name="X509Certificate" type="ds:CryptoBinary"/>
            </choice>
          </sequence>
          <element name="X509CRL" type="ds:CryptoBinary"/>
        </choice>
      </complexType>
    </element>
        
    <element name="X509IssuerSerial">
       <complexType>
        <sequence>
          <element name="X509IssuerName" type="string"/>
          <element name="X509SerialNumber" type="integer"/>
        </sequence>
       </complexType>
    </element>
        
    <element name="X509IssuerSerial">
       <complexType>
        <sequence>
          <element name="X509IssuerName" type="string"/>
          <element name="X509SerialNumber" type="integer"/>
        </sequence>
       </complexType>
    </element>
        

DTD

DTD

   <!ELEMENT X509Data ((X509IssuerSerial | X509SKI | X509SubjectName |
                       X509Certificate)+ | X509CRL)>
    <!ELEMENT X509IssuerSerial (X509IssuerName, X509SerialNumber) >
    <!ELEMENT X509IssuerName (#PCDATA) >
    <!ELEMENT X509SubjectName (#PCDATA) >
    <!ELEMENT X509SerialNumber (#PCDATA) >
    <!ELEMENT X509SKI (#PCDATA) >
    <!ELEMENT X509Certificate (#PCDATA) >
    <!ELEMENT X509CRL (#PCDATA) >
        
   <!ELEMENT X509Data ((X509IssuerSerial | X509SKI | X509SubjectName |
                       X509Certificate)+ | X509CRL)>
    <!ELEMENT X509IssuerSerial (X509IssuerName, X509SerialNumber) >
    <!ELEMENT X509IssuerName (#PCDATA) >
    <!ELEMENT X509SubjectName (#PCDATA) >
    <!ELEMENT X509SerialNumber (#PCDATA) >
    <!ELEMENT X509SKI (#PCDATA) >
    <!ELEMENT X509Certificate (#PCDATA) >
    <!ELEMENT X509CRL (#PCDATA) >
        
4.4.5 The PGPData element
4.4.5 PGPData元素
   Identifier
         Type="http://www.w3.org/2000/09/xmldsig#PGPData"
         (this can be used within a RetrievalMethod or Reference element
         to identify the referent's type)
        
   Identifier
         Type="http://www.w3.org/2000/09/xmldsig#PGPData"
         (this can be used within a RetrievalMethod or Reference element
         to identify the referent's type)
        

The PGPData element within KeyInfo is used to convey information related to PGP public key pairs and signatures on such keys. The PGPKeyID's value is a string containing a standard PGP public key identifier as defined in [PGP, section 11.2]. The PGPKeyPacket contains a base64-encoded Key Material Packet as defined in [PGP, section 5.5]. Other sub-types of the PGPData element may be defined by the OpenPGP working group. Schema Definition:

KeyInfo中的PGPData元素用于传递与PGP公钥对和此类密钥上的签名相关的信息。PGPKeyID的值是一个字符串,包含[PGP,第11.2节]中定义的标准PGP公钥标识符。PGPKEY数据包包含[PGP,第5.5节]中定义的base64编码密钥材料数据包。PGPData元素的其他子类型可由OpenPGP工作组定义。架构定义:

   <element name="PGPData">
     <complexType>
       <choice>
        
   <element name="PGPData">
     <complexType>
       <choice>
        
         <any namespace="##other" processContents="lax" minOccurs="0"
         maxOccurs="unbounded"/>
         <sequence>
           <element name="PGPKeyID" type="string"/>
           <element name="PGPKeyPacket" type="ds:CryptoBinary"/>
         </sequence>
       </choice>
     </complexType>
   </element>
        
         <any namespace="##other" processContents="lax" minOccurs="0"
         maxOccurs="unbounded"/>
         <sequence>
           <element name="PGPKeyID" type="string"/>
           <element name="PGPKeyPacket" type="ds:CryptoBinary"/>
         </sequence>
       </choice>
     </complexType>
   </element>
        

DTD:

DTD:

   <!ELEMENT PGPData (PGPKeyID, PGPKeyPacket)  >
   <!ELEMENT PGPKeyPacket  (#PCDATA)  >
   <!ELEMENT PGPKeyID  (#PCDATA)  >
        
   <!ELEMENT PGPData (PGPKeyID, PGPKeyPacket)  >
   <!ELEMENT PGPKeyPacket  (#PCDATA)  >
   <!ELEMENT PGPKeyID  (#PCDATA)  >
        
4.4.6 The SPKIData element
4.4.6 SPKIData元素
   Identifier
         Type="http://www.w3.org/2000/09/xmldsig#SPKIData"
         (this can be used within a RetrievalMethod or Reference element
         to identify the referent's type)
        
   Identifier
         Type="http://www.w3.org/2000/09/xmldsig#SPKIData"
         (this can be used within a RetrievalMethod or Reference element
         to identify the referent's type)
        

The SPKIData element within KeyInfo is used to convey information related to SPKI public key pairs, certificates and other SPKI data. The content of this element type is expected to be a Canonical S-expression. Schema Definition:

KeyInfo中的SPKIData元素用于传递与SPKI公钥对、证书和其他SPKI数据相关的信息。此元素类型的内容应为规范的S表达式。架构定义:

<element name="SPKIData" type="string"/> DTD:

<element name=“SPKIData”type=“string”/>DTD:

   <!ELEMENT SPKIData (#PCDATA) >
        
   <!ELEMENT SPKIData (#PCDATA) >
        
4.4.7 The MgmtData element
4.4.7 MgmtData元素
   Identifier
         Type="http://www.w3.org/2000/09/xmldsig#MgmtData"
         (this can be used within a RetrievalMethod or Reference element
         to identify the referent's type)
        
   Identifier
         Type="http://www.w3.org/2000/09/xmldsig#MgmtData"
         (this can be used within a RetrievalMethod or Reference element
         to identify the referent's type)
        

The MgmtData element within KeyInfo is a string value used to convey in-band key distribution or agreement data. For example, DH key exchange, RSA key encryption, etc. Schema Definition:

KeyInfo中的MgmtData元素是一个字符串值,用于传递带内密钥分发或协议数据。例如,DH密钥交换、RSA密钥加密等。模式定义:

<!-- type declared in KeyInfo --> DTD:

<!-- 在KeyInfo-->DTD中声明的类型:

   <!ELEMENT MgmtData (#PCDATA)>
        
   <!ELEMENT MgmtData (#PCDATA)>
        
4.5 The Object Element
4.5 对象元素
   Identifier
         Type="http://www.w3.org/2000/09/xmldsig#Object"
         (this can be used within a Reference element to identify the
         referent's type)
        
   Identifier
         Type="http://www.w3.org/2000/09/xmldsig#Object"
         (this can be used within a Reference element to identify the
         referent's type)
        

Object is an optional element that may occur one or more times. When present, this element may contain any data. The Object element may include optional MIME type, ID, and encoding attributes.

对象是一个可选元素,可以出现一次或多次。当存在时,此元素可能包含任何数据。Object元素可以包括可选的MIME类型、ID和编码属性。

The MimeType attribute is an optional attribute which describes the data within the Object. This is a string with values defined by [MIME]. For example, if the Object contains XML, the MimeType could be text/xml. This attribute is purely advisory; no validation of the MimeType information is required by this specification.

MimeType属性是一个可选属性,用于描述对象中的数据。这是一个字符串,其值由[MIME]定义。例如,如果对象包含XML,则MimeType可以是text/XML。这种属性纯粹是咨询性的;本规范不要求对MimeType信息进行验证。

The Object's Id is commonly referenced from a Reference in SignedInfo, or Manifest. This element is typically used for enveloping signatures where the object being signed is to be included in the signature element. The digest is calculated over the entire Object element including start and end tags.

对象的Id通常从SignedInfo或Manifest中的引用引用。此元素通常用于封装签名,其中签名对象将包含在签名元素中。摘要是在整个对象元素(包括开始和结束标记)上计算的。

The Object's Encoding attributed may be used to provide a URI that identifies the method by which the object is encoded (e.g., a binary file).

对象的编码属性可用于提供标识对象编码方法的URI(例如,二进制文件)。

Note, if the application wishes to exclude the <Object> tags from the digest calculation the Reference must identify the actual data object (easy for XML documents) or a transform must be used to remove the Object tags (likely where the data object is non-XML). Exclusion of the object tags may be desired for cases where one wants the signature to remain valid if the data object is moved from inside a signature to outside the signature (or vice-versa), or where the content of the Object is an encoding of an original binary document and it is desired to extract and decode so as to sign the original bitwise representation. Schema Definition:

注意,如果应用程序希望从摘要计算中排除<Object>标记,则引用必须标识实际的数据对象(对于XML文档来说很容易),或者必须使用转换来删除对象标记(可能在数据对象为非XML的情况下)。如果数据对象从签名内部移动到签名外部(或反之亦然),希望签名保持有效,则可能需要排除对象标记,或者,其中对象的内容是原始二进制文档的编码,并且希望提取和解码以便对原始位表示进行签名。架构定义:

   <element name="Object">
     <complexType mixed="true">
       <sequence maxOccurs="unbounded">
         <any namespace="##any" processContents="lax"/>
        
   <element name="Object">
     <complexType mixed="true">
       <sequence maxOccurs="unbounded">
         <any namespace="##any" processContents="lax"/>
        

</sequence> <attribute name="Id" type="ID" use="optional"/> <attribute name="MimeType" type="string" use="optional"/> <!-- add a grep facet --> <attribute name="Encoding" type="uriReference" use="optional"/> </complexType> </element> DTD:

</sequence><attribute name=“Id”type=“Id”use=“optional”/><attribute name=“MimeType”type=“string”use=“optional”/><!--添加一个grep方面--><attribute name=“Encoding”type=“uriReference”use=“optional”/></complexType></element>DTD:

   <!ELEMENT Object %Object.ANY; >
   <!ATTLIST Object
             Id ID  #IMPLIED
             MimeType   CDATA   #IMPLIED
             Encoding   CDATA   #IMPLIED >
        
   <!ELEMENT Object %Object.ANY; >
   <!ATTLIST Object
             Id ID  #IMPLIED
             MimeType   CDATA   #IMPLIED
             Encoding   CDATA   #IMPLIED >
        
5.0 Additional Signature Syntax
5.0 附加签名语法

This section describes the optional to implement Manifest and SignatureProperties elements and describes the handling of XML processing instructions and comments. With respect to the elements Manifest and SignatureProperties this section specifies syntax and little behavior -- it is left to the application. These elements can appear anywhere the parent's content model permits; the Signature content model only permits them within Object.

本节描述了实现清单和SignatureProperties元素的可选方法,并描述了XML处理指令和注释的处理。关于元素Manifest和SignatureProperties,本节指定了语法和一些行为——由应用程序决定。这些元素可以出现在父级内容模型允许的任何位置;签名内容模型只允许在对象中使用它们。

5.1 The Manifest Element
5.1 清单元素
   Identifier
         Type="http://www.w3.org/2000/09/xmldsig#Manifest"
         (this can be used within a Reference element to identify the
         referent's type)
        
   Identifier
         Type="http://www.w3.org/2000/09/xmldsig#Manifest"
         (this can be used within a Reference element to identify the
         referent's type)
        

The Manifest element provides a list of References. The difference from the list in SignedInfo is that it is application defined which, if any, of the digests are actually checked against the objects referenced and what to do if the object is inaccessible or the digest compare fails. If a Manifest is pointed to from SignedInfo, the digest over the Manifest itself will be checked by the core signature validation behavior. The digests within such a Manifest are checked at the application's discretion. If a Manifest is referenced from another Manifest, even the overall digest of this two level deep Manifest might not be checked. Schema Definition:

Manifest元素提供引用列表。与SignedInfo中的列表不同的是,它是应用程序定义的,如果有的话,会根据引用的对象实际检查哪些摘要,如果对象不可访问或摘要比较失败,该怎么办。如果从SignedInfo指向清单,则核心签名验证行为将检查清单本身的摘要。此类清单中的摘要由应用程序自行检查。如果一个清单是从另一个清单引用的,甚至可能不会检查这个两级深度清单的总体摘要。架构定义:

   <element name="Manifest">
     <complexType>
       <sequence>
         <element ref="ds:Reference" maxOccurs="unbounded"/>
        
   <element name="Manifest">
     <complexType>
       <sequence>
         <element ref="ds:Reference" maxOccurs="unbounded"/>
        

</sequence> <attribute name="Id" type="ID" use="optional"/> </complexType> </element> DTD:

</sequence><attribute name=“Id”type=“Id”use=“optional”/></complexType></element>DTD:

   <!ELEMENT Manifest (Reference+)  >
   <!ATTLIST Manifest
             Id ID  #IMPLIED >
        
   <!ELEMENT Manifest (Reference+)  >
   <!ATTLIST Manifest
             Id ID  #IMPLIED >
        
5.2 The SignatureProperties Element
5.2 SignatureProperties元素
   Identifier
         Type="http://www.w3.org/2000/09/xmldsig#SignatureProperties"
         (this can be used within a Reference element to identify the
         referent's type)
        
   Identifier
         Type="http://www.w3.org/2000/09/xmldsig#SignatureProperties"
         (this can be used within a Reference element to identify the
         referent's type)
        

Additional information items concerning the generation of the signature(s) can be placed in a SignatureProperty element (i.e., date/time stamp or the serial number of cryptographic hardware used in signature generation). Schema Definition:

有关生成签名的附加信息项可以放在SignatureProperty元素中(即日期/时间戳或签名生成中使用的加密硬件的序列号)。架构定义:

   <element name="SignatureProperties">
     <complexType>
       <sequence>
      <element ref="ds:SignatureProperty" maxOccurs="unbounded"/>
     </sequence>
       <attribute name="Id" type="ID" use="optional"/>
     </complexType>
   </element>
        
   <element name="SignatureProperties">
     <complexType>
       <sequence>
      <element ref="ds:SignatureProperty" maxOccurs="unbounded"/>
     </sequence>
       <attribute name="Id" type="ID" use="optional"/>
     </complexType>
   </element>
        

<element name="SignatureProperty"> <complexType mixed="true"> <choice minOccurs="0" maxOccurs="unbounded"> <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/> </choice> <attribute name="Target" type="uriReference" use="required"/> <attribute name="Id" type="ID" use="optional"/> </complexType> </element> DTD:

<element name=“SignatureProperty”><complexType mixed=“true”><choice minOccurs=“0”maxocurs=“unbounded”><any namespace=“###other”processContents=“lax”minOccurs=“0”maxocurs=“unbounded”/></choice><attribute name=“Target”type=“uriReference”use=“required”/><attribute name=“Id”type=“Id”use=“optional”/><complexType></element>DTD:

   <!ELEMENT SignatureProperties (SignatureProperty+)  >
   <!ATTLIST SignatureProperties
             Id ID   #IMPLIED  >
        
   <!ELEMENT SignatureProperties (SignatureProperty+)  >
   <!ATTLIST SignatureProperties
             Id ID   #IMPLIED  >
        
   <!ELEMENT SignatureProperty %SignatureProperty.ANY >
   <!ATTLIST SignatureProperty
             Target CDATA    #REQUIRED
             Id ID  #IMPLIED  >
        
   <!ELEMENT SignatureProperty %SignatureProperty.ANY >
   <!ATTLIST SignatureProperty
             Target CDATA    #REQUIRED
             Id ID  #IMPLIED  >
        
5.3 Processing Instructions in Signature Elements
5.3 签名元素中的处理指令

No XML processing instructions (PIs) are used by this specification.

本规范未使用XML处理指令(PI)。

Note that PIs placed inside SignedInfo by an application will be signed unless the CanonicalizationMethod algorithm discards them. (This is true for any signed XML content.) All of the CanonicalizationMethods specified within this specification retain PIs. When a PI is part of content that is signed (e.g., within SignedInfo or referenced XML documents) any change to the PI will obviously result in a signature failure.

请注意,应用程序放置在SignedInfo中的PI将被签名,除非规范化方法算法丢弃它们。(对于任何签名的XML内容都是如此。)本规范中指定的所有规范化方法都保留PI。当PI是已签名内容的一部分(例如,在SignedInfo或引用的XML文档中)时,对PI的任何更改都将明显导致签名失败。

5.4 Comments in Signature Elements
5.4 签名要素中的注释

XML comments are not used by this specification.

本规范不使用XML注释。

Note that unless CanonicalizationMethod removes comments within SignedInfo or any other referenced XML (which [XML-C14N] does), they will be signed. Consequently, if they are retained, a change to the comment will cause a signature failure. Similarly, the XML signature over any XML data will be sensitive to comment changes unless a comment-ignoring canonicalization/transform method, such as the Canonical XML [XML-C14N], is specified.

请注意,除非规范化方法删除SignedInfo或任何其他引用的XML(XML-C14N确实如此)中的注释,否则它们将被签名。因此,如果保留它们,对注释的更改将导致签名失败。类似地,任何XML数据上的XML签名都会对注释更改敏感,除非指定了忽略规范化/转换方法的注释,例如规范化XML[XML-C14N]。

6.0 Algorithms
6.0 算法

This section identifies algorithms used with the XML digital signature specification. Entries contain the identifier to be used in Signature elements, a reference to the formal specification, and definitions, where applicable, for the representation of keys and the results of cryptographic operations.

本节介绍了与XML数字签名规范一起使用的算法。条目包含要在签名元素中使用的标识符、对正式规范的引用以及用于表示密钥和加密操作结果的定义(如适用)。

6.1 Algorithm Identifiers and Implementation Requirements
6.1 算法标识符和实现要求

Algorithms are identified by URIs that appear as an attribute to the element that identifies the algorithms' role (DigestMethod, Transform, SignatureMethod, or CanonicalizationMethod). All algorithms used herein take parameters but in many cases the parameters are implicit. For example, a SignatureMethod is implicitly given two parameters: the keying info and the output of CanonicalizationMethod. Explicit additional parameters to an algorithm appear as content elements within the algorithm role

算法由URI标识,URI显示为标识算法角色的元素(DigestMethod、Transform、SignatureMethod或Canonicalization Method)的属性。本文使用的所有算法都采用参数,但在许多情况下,参数是隐式的。例如,SignatureMethod隐式提供了两个参数:键控信息和规范化方法的输出。算法的显式附加参数显示为算法角色中的内容元素

element. Such parameter elements have a descriptive element name, which is frequently algorithm specific, and MUST be in the XML Signature namespace or an algorithm specific namespace.

要素此类参数元素具有描述性元素名称,该名称通常特定于算法,并且必须位于XML签名命名空间或特定于算法的命名空间中。

This specification defines a set of algorithms, their URIs, and requirements for implementation. Requirements are specified over implementation, not over requirements for signature use. Furthermore, the mechanism is extensible, alternative algorithms may be used by signature applications.

本规范定义了一组算法、它们的URI和实现要求。要求是在实施过程中规定的,而不是在签名使用要求中规定的。此外,该机制是可扩展的,签名应用程序可以使用替代算法。

(Note that the normative identifier is the complete URI in the table though they are sometimes abbreviated in XML syntax (e.g., "&dsig;base64").)

(请注意,标准标识符是表中的完整URI,尽管它们有时用XML语法缩写(例如,“&dsig;base64”)。)

   Algorithm Type
      Algorithm - Requirements - Algorithm URI
   Digest
      SHA1  - REQUIRED - &dsig;sha1
   Encoding
      base64  - REQUIRED - &dsig;base64
   MAC
      HMAC-SHA1 - REQUIRED - &dsig;hmac-sha1
   Signature
      DSAwithSHA1(DSS) - REQUIRED - &dsig;dsa-sha1
      RSAwithSHA1 - RECOMMENDED - &dsig;rsa-sha1
   Canonicalization
      minimal - RECOMMENDED - &dsig;minimal
      Canonical XML with Comments - RECOMMENDED -
         http://www.w3.org/TR/2000/CR-xml-c14n-20001026#WithComments
      Canonical XML (omits comments) - REQUIRED -
         http://www.w3.org/TR/2000/CR-xml-c14n-20001026
   Transform
      XSLT - OPTIONAL - http://www.w3.org/TR/1999/REC-xslt-19991116
      XPath - RECOMMENDED -
         http://www.w3.org/TR/1999/REC-xpath-19991116
      Enveloped Signature* - REQUIRED - &dsig;enveloped-signature
        
   Algorithm Type
      Algorithm - Requirements - Algorithm URI
   Digest
      SHA1  - REQUIRED - &dsig;sha1
   Encoding
      base64  - REQUIRED - &dsig;base64
   MAC
      HMAC-SHA1 - REQUIRED - &dsig;hmac-sha1
   Signature
      DSAwithSHA1(DSS) - REQUIRED - &dsig;dsa-sha1
      RSAwithSHA1 - RECOMMENDED - &dsig;rsa-sha1
   Canonicalization
      minimal - RECOMMENDED - &dsig;minimal
      Canonical XML with Comments - RECOMMENDED -
         http://www.w3.org/TR/2000/CR-xml-c14n-20001026#WithComments
      Canonical XML (omits comments) - REQUIRED -
         http://www.w3.org/TR/2000/CR-xml-c14n-20001026
   Transform
      XSLT - OPTIONAL - http://www.w3.org/TR/1999/REC-xslt-19991116
      XPath - RECOMMENDED -
         http://www.w3.org/TR/1999/REC-xpath-19991116
      Enveloped Signature* - REQUIRED - &dsig;enveloped-signature
        

* The Enveloped Signature transform removes the Signature element from the calculation of the signature when the signature is within the content that it is being signed. This MAY be implemented via the RECOMMENDED XPath specification specified in 6.6.4: Enveloped Signature Transform; it MUST have the same effect as that specified by the XPath Transform.

* 当签名在被签名的内容内时,包络签名转换将签名元素从签名计算中移除。这可以通过6.6.4:封装签名转换中指定的推荐XPath规范来实现;它必须具有与XPath转换指定的效果相同的效果。

6.2 Message Digests
6.2 消息摘要

Only one digest algorithm is defined herein. However, it is expected that one or more additional strong digest algorithms will be developed in connection with the US Advanced Encryption Standard effort. Use of MD5 [MD5] is NOT RECOMMENDED because recent advances in cryptography have cast doubt on its strength.

本文仅定义了一种摘要算法。然而,预计将结合美国高级加密标准开发一个或多个额外的强摘要算法。不建议使用MD5[MD5],因为密码学的最新进展使人们对其强度产生了怀疑。

6.2.1 SHA-1
6.2.1 SHA-1
   Identifier:
         http://www.w3.org/2000/09/xmldsig#sha1
        
   Identifier:
         http://www.w3.org/2000/09/xmldsig#sha1
        
   The SHA-1 algorithm [SHA-1] takes no explicit parameters.  An example
   of an SHA-1 DigestAlg element is:
   <DigestMethod Algorithm="&dsig;sha1"/>
        
   The SHA-1 algorithm [SHA-1] takes no explicit parameters.  An example
   of an SHA-1 DigestAlg element is:
   <DigestMethod Algorithm="&dsig;sha1"/>
        

A SHA-1 digest is a 160-bit string. The content of the DigestValue element shall be the base64 encoding of this bit string viewed as a 20-octet octet stream. For example, the DigestValue element for the message digest: A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D

SHA-1摘要是一个160位的字符串。DigestValue元素的内容应为该位字符串的base64编码,该位字符串被视为20个八位字节流。例如,消息摘要的DigestValue元素:A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D

   from Appendix A of the SHA-1 standard would be:
   <DigestValue>qZk+NkcGgWq6PiVxeFDCbJzQ2J0=</DigestValue>
        
   from Appendix A of the SHA-1 standard would be:
   <DigestValue>qZk+NkcGgWq6PiVxeFDCbJzQ2J0=</DigestValue>
        
6.3 Message Authentication Codes
6.3 消息认证码

MAC algorithms take two implicit parameters, their keying material determined from KeyInfo and the octet stream output by CanonicalizationMethod. MACs and signature algorithms are syntactically identical but a MAC implies a shared secret key.

MAC算法采用两个隐式参数,它们的键控材料由KeyInfo确定,八位元流通过规范化方法输出。MAC和签名算法在语法上是相同的,但MAC意味着共享密钥。

6.3.1 HMAC
6.3.1 HMAC
   Identifier:
         http://www.w3.org/2000/09/xmldsig#hmac-sha1
        
   Identifier:
         http://www.w3.org/2000/09/xmldsig#hmac-sha1
        

The HMAC algorithm (RFC2104 [HMAC]) takes the truncation length in bits as a parameter; if the parameter is not specified then all the bits of the hash are output. An example of an HMAC SignatureMethod element:

HMAC算法(RFC2104[HMAC])以位为单位的截断长度作为参数;如果未指定参数,则输出散列的所有位。HMAC SignatureMethod元素的一个示例:

   <SignatureMethod Algorithm="&dsig;hmac-sha1">
      <HMACOutputLength>128</HMACOutputLength>
   </SignatureMethod>
        
   <SignatureMethod Algorithm="&dsig;hmac-sha1">
      <HMACOutputLength>128</HMACOutputLength>
   </SignatureMethod>
        

The output of the HMAC algorithm is ultimately the output (possibly truncated) of the chosen digest algorithm. This value shall be base64 encoded in the same straightforward fashion as the output of the digest algorithms. Example: the SignatureValue element for the HMAC-SHA1 digest

HMAC算法的输出最终是所选摘要算法的输出(可能被截断)。该值应以与摘要算法输出相同的简单方式进行base64编码。示例:HMAC-SHA1摘要的SignatureValue元素

9294727A 3638BB1C 13F48EF8 158BFC9D

9294727A 3638BB1C 13F48EF8 158BFC9D

from the test vectors in [HMAC] would be

根据[HMAC]中的测试向量

<SignatureValue>kpRyejY4uxwT9I74FYv8nQ==</SignatureValue> Schema Definition:

<SignatureValue>kpRyejY4uxwT9I74FYv8nQ==</SignatureValue>架构定义:

<element name="HMACOutputLength" type="integer"/> DTD:

<element name=“HMACOutputLength”type=“integer”/>DTD:

   <!ELEMENT HMACOutputLength (#PCDATA)>
        
   <!ELEMENT HMACOutputLength (#PCDATA)>
        
6.4 Signature Algorithms
6.4 签名算法

Signature algorithms take two implicit parameters, their keying material determined from KeyInfo and the octet stream output by CanonicalizationMethod. Signature and MAC algorithms are syntactically identical but a signature implies public key cryptography.

签名算法采用两个隐式参数,它们的密钥材料由KeyInfo确定,八位字节流通过规范化方法输出。签名和MAC算法在语法上相同,但签名意味着公钥加密。

6.4.1 DSA
6.4.1 数字减影
   Identifier:
         http://www.w3.org/2000/09/xmldsig#dsa-sha1
        
   Identifier:
         http://www.w3.org/2000/09/xmldsig#dsa-sha1
        

The DSA algorithm [DSS] takes no explicit parameters. An example of a DSA SignatureMethod element is:

DSA算法[DSS]不接受显式参数。DSA SignatureMethod元素的一个示例是:

   <SignatureMethod Algorithm="&dsig;dsa"/>
        
   <SignatureMethod Algorithm="&dsig;dsa"/>
        

The output of the DSA algorithm consists of a pair of integers usually referred by the pair (r, s). The signature value consists of the base64 encoding of the concatenation of two octet-streams that respectively result from the octet-encoding of the values r and s. Integer to octet-stream conversion must be done according to the I2OSP operation defined in the RFC 2437 [PKCS1] specification with a k parameter equal to 20. For example, the SignatureValue element for a DSA signature (r, s) with values specified in hexadecimal:

DSA算法的输出由一对通常由该对(r,s)引用的整数组成。签名值由两个八位字节流的串联的base64编码组成,这两个八位字节流分别由值r和s的八位字节编码产生。整数到八位字节流的转换必须根据RFC 2437[PKCS1]规范中定义的I2OSP操作进行,k参数等于20。例如,具有十六进制指定值的DSA签名(r,s)的SignatureValue元素:

r = 8BAC1AB6 6410435C B7181F95 B16AB97C 92B341C0 s = 41E2345F 1F56DF24 58F426D1 55B4BA2D B6DCD8C8

r=8BAC1AB6 6410435C B7181F95 B16AB97C 92B341C0 s=41E2345F 1F56DF24 58F426D1 55B4BA2D B6DCD8C8

from the example in Appendix 5 of the DSS standard would be

DSS标准附录5中的示例如下:

<SignatureValue>
i6watmQQQ1y3GB+VsWq5fJKzQcBB4jRfH1bfJFj0JtFVtLotttzYyA==</SignatureValue>
        
<SignatureValue>
i6watmQQQ1y3GB+VsWq5fJKzQcBB4jRfH1bfJFj0JtFVtLotttzYyA==</SignatureValue>
        

DSA key values have the following set of fields: P, Q, G and Y are mandatory when appearing as a key value, J, seed and pgenCounter are optional but should be present. (The seed and pgenCounter fields must appear together or be absent). All parameters are encoded as base64 [MIME] values. Schema:

DSA键值具有以下字段集:P、Q、G和Y在显示为键值时是必需的,J、seed和PGE是可选的,但应该存在。(种子和种子字段必须同时出现或不存在)。所有参数都编码为base64[MIME]值。模式:

<element name="DSAKeyValue"> <complexType> <sequence> <sequence> <element name="P" type="ds:CryptoBinary"/> <element name="Q" type="ds:CryptoBinary"/> <element name="G" type="ds:CryptoBinary"/> <element name="Y" type="ds:CryptoBinary"/> <element name="J" type="ds:CryptoBinary" minOccurs="0"/> </sequence> <sequence minOccurs="0"> <element name="Seed" type="ds:CryptoBinary"/> <element name="PgenCounter" type="ds:CryptoBinary"/> </sequence> </sequence> </complexType> </element> DTD:

<element name=“DSAKeyValue”><complexType><sequence><element name=“P”type=“ds:CryptoBinary”/><element name=“Q”type=“ds:CryptoBinary”/><element name=“G”type=“ds:CryptoBinary”/><element name=“J”type=“ds:CryptoBinary”minOccurs=“0”/=“Seed”type=“ds:CryptoBinary”/><element name=“pgmeeting”type=“ds:CryptoBinary”/></sequence></complexType></element>DTD:

   <!ELEMENT DSAKeyValue (P, Q, G, Y, J?, (Seed, PgenCounter)?) >
   <!ELEMENT P (#PCDATA) >
   <!ELEMENT Q (#PCDATA) >
   <!ELEMENT G (#PCDATA) >
   <!ELEMENT Y (#PCDATA) >
   <!ELEMENT J (#PCDATA) >
   <!ELEMENT Seed (#PCDATA) >
   <!ELEMENT PgenCounter (#PCDATA) >
        
   <!ELEMENT DSAKeyValue (P, Q, G, Y, J?, (Seed, PgenCounter)?) >
   <!ELEMENT P (#PCDATA) >
   <!ELEMENT Q (#PCDATA) >
   <!ELEMENT G (#PCDATA) >
   <!ELEMENT Y (#PCDATA) >
   <!ELEMENT J (#PCDATA) >
   <!ELEMENT Seed (#PCDATA) >
   <!ELEMENT PgenCounter (#PCDATA) >
        
6.4.2 PKCS1
6.4.2 PKCS1
   Identifier:
         http://www.w3.org/2000/09/xmldsig#rsa-sha1
        
   Identifier:
         http://www.w3.org/2000/09/xmldsig#rsa-sha1
        

Arbitrary-length integers (e.g., "bignums" such as RSA modulii) are represented in XML as octet strings. The integer value is first converted to a "big endian" bitstring. The bitstring is then padded

任意长度的整数(如RSA modulii等“bignums”)在XML中表示为八位字节字符串。整数值首先转换为“big-endian”位字符串。然后填充位字符串

with leading zero bits so that the total number of bits == 0 mod 8 (so that there are an even number of bytes). If the bitstring contains entire leading bytes that are zero, these are removed (so the high-order byte is always non-zero). This octet string is then base64 [MIME] encoded. (The conversion from integer to octet string is equivalent to IEEE 1363's I2OSP [1363] with minimal length).

具有前导零位,因此位的总数==0 mod 8(因此字节数为偶数)。如果位字符串包含零的整个前导字节,则这些字节将被删除(因此高阶字节始终为非零)。然后对该八位字节字符串进行base64[MIME]编码。(从整数到八位字节字符串的转换相当于IEEE 1363的I2OSP[1363]的最小长度)。

The expression "RSA algorithm" as used in this document refers to the RSASSA-PKCS1-v1_5 algorithm described in RFC 2437 [PKCS1]. The RSA algorithm takes no explicit parameters. An example of an RSA SignatureMethod element is: <SignatureMethod Algorithm="&dsig;rsa-sha1"/>

本文件中使用的“RSA算法”表示RFC 2437[PKCS1]中描述的RSASSA-PKCS1-v1_5算法。RSA算法不需要显式参数。RSA SignatureMethod元素的一个示例是:<SignatureMethod Algorithm=“&dsig;RSA-sha1”/>

The SignatureValue content for an RSA signature is the base64 [MIME] encoding of the octet string computed as per RFC 2437 [PKCS1, section 8.1.1: Signature generation for the RSASSA-PKCS1-v1_5 signature scheme]. As specified in the EMSA-PKCS1-V1_5-ENCODE function RFC 2437 [PKCS1, section 9.2.1], the value input to the signature function MUST contain a pre-pended algorithm object identifier for the hash function, but the availability of an ASN.1 parser and recognition of OIDs is not required of a signature verifier. The PKCS#1 v1.5 representation appears as:

RSA签名的SignatureValue内容是根据RFC 2437[PKCS1,第8.1.1节:RSASSA-PKCS1-v1_5签名方案的签名生成]计算的八进制字符串的base64[MIME]编码。如EMSA-PKCS1-V1_5-编码函数RFC 2437[PKCS1,第9.2.1节]所述,输入到签名函数的值必须包含哈希函数的预挂算法对象标识符,但签名验证器不需要ASN.1解析器的可用性和OID的识别。PKCS#1 v1.5表示形式如下所示:

CRYPT (PAD (ASN.1 (OID, DIGEST (data))))

密码(PAD(ASN.1(OID,摘要(数据)))

Note that the padded ASN.1 will be of the following form:

请注意,填充ASN.1将采用以下形式:

01 | FF* | 00 | prefix | hash

01 | FF*| 00 |前缀|散列

where "|" is concatentation, "01", "FF", and "00" are fixed octets of the corresponding hexadecimal value, "hash" is the SHA1 digest of the data, and "prefix" is the ASN.1 BER SHA1 algorithm designator prefix required in PKCS1 [RFC 2437], that is,

其中“|”是浓缩,“01”、“FF”和“00”是对应十六进制值的固定八位字节,“哈希”是数据的SHA1摘要,“前缀”是PKCS1[RFC 2437]中要求的ASN.1 BER SHA1算法指示符前缀,即,

hex 30 21 30 09 06 05 2B 0E 03 02 1A 05 00 04 14

六角30 21 30 09 06 05 2B 0E 03 02 1A 05 00 04 14

This prefix is included to make it easier to use standard cryptographic libraries. The FF octet MUST be repeated the maximum number of times such that the value of the quantity being CRYPTed is one octet shorter than the RSA modulus.

包含此前缀是为了更容易使用标准加密库。FF八位组必须重复最大次数,以便加密数量的值比RSA模短一个八位组。

The resulting base64 [MIME] string is the value of the child text node of the SignatureValue element, e.g.

生成的base64[MIME]字符串是SignatureValue元素的子文本节点的值,例如。

      <SignatureValue>IWijxQjUrcXBYoCei4QxjWo9Kg8D3p9tlWoT4
      t0/gyTE96639In0FZFY2/rvP+/bMJ01EArmKZsR5VW3rwoPxw=
      </SignatureValue>
        
      <SignatureValue>IWijxQjUrcXBYoCei4QxjWo9Kg8D3p9tlWoT4
      t0/gyTE96639In0FZFY2/rvP+/bMJ01EArmKZsR5VW3rwoPxw=
      </SignatureValue>
        

RSA key values have two fields Modulus and Exponent

RSA密钥值有两个字段:模和指数

<RSAKeyValue>

<RSAKeyValue>

   <Modulus>xA7SEU+e0yQH5rm9kbCDN9o3aPIo7HbP7tX6WOocLZAtNfyxSZDU16ksL6W
        
   <Modulus>xA7SEU+e0yQH5rm9kbCDN9o3aPIo7HbP7tX6WOocLZAtNfyxSZDU16ksL6W
        
   jubafOqNEpcwR3RdFsT7bCqnXPBe5ELh5u4VEy19MzxkXRgrMvavzyBpVRgBUwUlV
         5foK5hhmbktQhyNdy/6LpQRhDUDsTvK+g9Ucj47es9AQJ3U=
         </Modulus>
         <Exponent>AQAB</Exponent>
      </RSAKeyValue>
        
   jubafOqNEpcwR3RdFsT7bCqnXPBe5ELh5u4VEy19MzxkXRgrMvavzyBpVRgBUwUlV
         5foK5hhmbktQhyNdy/6LpQRhDUDsTvK+g9Ucj47es9AQJ3U=
         </Modulus>
         <Exponent>AQAB</Exponent>
      </RSAKeyValue>
        

Schema:

模式:

<element name="RSAKeyValue"> <complexType> <sequence> <element name="Modulus" type="ds:CryptoBinary"/> <element name="Exponent" type="ds:CryptoBinary"/> </sequence> </complexType> </element> DTD:

<element name=“RSAKeyValue”><complexType><sequence><element name=“module”type=“ds:CryptoBinary”/><element name=“Exponent”type=“ds:CryptoBinary”/><sequence><complexType><element>DTD:

   <!ELEMENT RSAKeyValue (Modulus, Exponent) >
   <!ELEMENT Modulus (#PCDATA) >
   <!ELEMENT Exponent (#PCDATA) >
        
   <!ELEMENT RSAKeyValue (Modulus, Exponent) >
   <!ELEMENT Modulus (#PCDATA) >
   <!ELEMENT Exponent (#PCDATA) >
        
6.5 Canonicalization Algorithms
6.5 规范化算法

If canonicalization is performed over octets, the canonicalization algorithms take two implicit parameter: the content and its charset. The charset is derived according to the rules of the transport protocols and media types (e.g., RFC2376 [XML-MT] defines the media types for XML). This information is necessary to correctly sign and verify documents and often requires careful server side configuration.

如果规范化是在八位字节上执行的,则规范化算法采用两个隐式参数:内容及其字符集。字符集是根据传输协议和媒体类型的规则导出的(例如,RFC2376[XML-MT]定义了XML的媒体类型)。这些信息是正确签署和验证文档所必需的,通常需要仔细的服务器端配置。

Various canonicalization algorithms require conversion to [UTF-8].The two algorithms below understand at least [UTF-8] and [UTF-16] as input encodings. We RECOMMEND that externally specified algorithms do the same. Knowledge of other encodings is OPTIONAL.

各种规范化算法需要转换为[UTF-8]。以下两种算法至少将[UTF-8]和[UTF-16]理解为输入编码。我们建议外部指定的算法也这样做。了解其他编码是可选的。

Various canonicalization algorithms transcode from a non-Unicode encoding to Unicode. The two algorithms below perform text normalization during transcoding [NFC]. We RECOMMEND that externally

各种规范化算法将非Unicode编码转换为Unicode编码。下面的两种算法在转码[NFC]期间执行文本规范化。我们建议外部

specified canonicalization algorithms do the same. (Note, there can be ambiguities in converting existing charsets to Unicode, for an example see the XML Japanese Profile [XML-Japanese] NOTE.)

指定的规范化算法也执行相同的操作。(注意,将现有字符集转换为Unicode时可能存在歧义,例如,请参见XML日语概要文件[XML日语]注释。)

6.5.1 Minimal Canonicalization
6.5.1 最小规范化
   Identifier:
         http://www.w3.org/2000/09/xmldsig#minimal
        
   Identifier:
         http://www.w3.org/2000/09/xmldsig#minimal
        
   An example of a minimal canonicalization element is:
   <CanonicalizationMethod Algorithm="&dsig;minimal"/>
        
   An example of a minimal canonicalization element is:
   <CanonicalizationMethod Algorithm="&dsig;minimal"/>
        

The minimal canonicalization algorithm:

最小规范化算法:

* converts the character encoding to UTF-8 (without any byte order mark (BOM)). If an encoding is given in the XML declaration, it must be removed. Implementations MUST understand at least [UTF-8] and [UTF-16] as input encodings. Non-Unicode to Unicode transcoding MUST perform text normalization [NFC]. * normalizes line endings as provided by [XML]. (See XML and Canonicalization and Syntactical Considerations (section 7).)

* 将字符编码转换为UTF-8(无任何字节顺序标记(BOM))。如果XML声明中给出了编码,则必须将其删除。实现必须至少理解[UTF-8]和[UTF-16]作为输入编码。非Unicode到Unicode转码必须执行文本规范化[NFC].*规范化[XML]提供的行尾。(参见XML和规范化以及语法方面的考虑(第7节)。)

This algorithm requires as input the octet stream of the resource to be processed; the algorithm outputs an octet stream. When used to canonicalize SignedInfo the algorithm MUST be provided with the octets that represent the well-formed SignedInfo element (and its children and content) as described in The CanonicalizationMethod Element (section 4.3.1).

该算法要求输入待处理资源的八位字节流;该算法输出一个八位组流。当用于规范化SignedInfo时,必须为算法提供表示格式良好的SignedInfo元素(及其子元素和内容)的八位字节,如规范化方法元素(第4.3.1节)所述。

If the signature application has a node set, then the signature application must convert it into octets as described in The Reference Processing Model (section 4.3.3.2). However, Minimal Canonicalization is NOT RECOMMENDED for processing XPath node-sets, the results of same-document URI references, and the output of other types of XML based transforms. It is only RECOMMENDED for simple character normalization of well formed XML that has no namespace or external entity complications.

如果签名应用程序具有节点集,则签名应用程序必须将其转换为参考处理模型(第4.3.3.2节)中所述的八位字节。但是,对于处理XPath节点集、相同文档URI引用的结果以及其他类型的基于XML的转换的输出,不建议使用最小规范化。只建议对格式良好的XML进行简单的字符规范化,这样就没有名称空间或外部实体的复杂性。

6.5.2 Canonical XML
6.5.2 规范XML
   Identifier for REQUIRED Canonical XML (omits comments):
         http://www.w3.org/TR/2000/CR-xml-c14n-20001026
        
   Identifier for REQUIRED Canonical XML (omits comments):
         http://www.w3.org/TR/2000/CR-xml-c14n-20001026
        
   Identifier for Canonical XML with Comments:
         http://www.w3.org/TR/2000/CR-xml-c14n-20001026#WithComments
        
   Identifier for Canonical XML with Comments:
         http://www.w3.org/TR/2000/CR-xml-c14n-20001026#WithComments
        

An example of an XML canonicalization element is:

XML规范化元素的一个示例是:

   <CanonicalizationMethod Algorithm="http://www.w3.org/TR/2000/CR-xml-
   c14n-20001026"/>
        
   <CanonicalizationMethod Algorithm="http://www.w3.org/TR/2000/CR-xml-
   c14n-20001026"/>
        

The normative specification of Canonical XML is [XML-C14N]. The algorithm is capable of taking as input either an octet stream or an XPath node-set (or sufficiently functional alternative). The algorithm produces an octet stream as output. Canonical XML is easily parameterized (via an additional URI) to omit or retain comments.

规范XML的规范性规范是[XML-C14N]。该算法能够将八位字节流或XPath节点集(或功能充分的备选方案)作为输入。该算法产生一个八位元流作为输出。规范XML很容易参数化(通过附加URI)以省略或保留注释。

6.6 Transform Algorithms
6.6 变换算法

A Transform algorithm has a single implicit parameters: an octet stream from the Reference or the output of an earlier Transform.

变换算法有一个单一的隐式参数:来自引用的八位字节流或早期变换的输出。

Application developers are strongly encouraged to support all transforms listed in this section as RECOMMENDED unless the application environment has resource constraints that would make such support impractical. Compliance with this recommendation will maximize application interoperability and libraries should be available to enable support of these transforms in applications without extensive development.

强烈鼓励应用程序开发人员按照建议支持本节中列出的所有转换,除非应用程序环境存在资源限制,使此类支持不切实际。遵守此建议将最大限度地提高应用程序的互操作性,并且应提供库,以便在应用程序中支持这些转换,而无需进行大量开发。

6.6.1 Canonicalization
6.6.1 规范化

Any canonicalization algorithm that can be used for CanonicalizationMethod (such as those in Canonicalization Algorithms (section 6.5)) can be used as a Transform.

任何可用于规范化方法的规范化算法(如规范化算法(第6.5节))都可以用作变换。

6.6.2 Base64
6.6.2 Base64
   Identifiers:
         http://www.w3.org/2000/09/xmldsig#base64
        
   Identifiers:
         http://www.w3.org/2000/09/xmldsig#base64
        

The normative specification for base 64 decoding transforms is [MIME]. The base64 Transform element has no content. The input is decoded by the algorithms. This transform is useful if an application needs to sign the raw data associated with the encoded content of an element.

base 64解码转换的标准规范为[MIME]。base64 Transform元素没有内容。输入由算法解码。如果应用程序需要对与元素的编码内容相关联的原始数据进行签名,则此转换非常有用。

This transform requires an octet stream for input. If an XPath node-set (or sufficiently functional alternative) is given as input, then it is converted to an octet stream by performing operations logically equivalent to 1) applying an XPath transform with expression self::text(), then 2) taking the string-value of the node-set. Thus, if an XML element is identified by a barename XPointer in the Reference URI, and its content consists solely of base64 encoded character data, then this transform automatically

此转换需要一个八位字节流作为输入。如果XPath节点集(或功能充分的备选方案)作为输入,则通过执行逻辑上等同于1)应用带有表达式self::text()的XPath转换,然后2)获取节点集的字符串值的操作,将其转换为八位字节流。因此,如果XML元素由引用URI中的barename XPointer标识,并且其内容仅由base64编码的字符数据组成,则此转换将自动进行

strips away the start and end tags of the identified element and any of its descendant elements as well as any descendant comments and processing instructions. The output of this transform is an octet stream.

去掉已标识元素及其任何子元素的开始标记和结束标记,以及任何子元素注释和处理指令。此转换的输出是一个八位字节流。

6.6.3 XPath Filtering
6.6.3 XPath过滤
   Identifier:
         http://www.w3.org/TR/1999/REC-xpath-19991116
        
   Identifier:
         http://www.w3.org/TR/1999/REC-xpath-19991116
        

The normative specification for XPath expression evaluation is [XPath]. The XPath expression to be evaluated appears as the character content of a transform parameter child element named XPath.

XPath表达式计算的标准规范是[XPath]。要计算的XPath表达式显示为名为XPath的转换参数子元素的字符内容。

The input required by this transform is an XPath node-set. Note that if the actual input is an XPath node-set resulting from a null URI or barename XPointer dereference, then comment nodes will have been omitted. If the actual input is an octet stream, then the application MUST convert the octet stream to an XPath node-set suitable for use by Canonical XML with Comments (a subsequent application of the REQUIRED Canonical XML algorithm would strip away these comments). In other words, the input node-set should be equivalent to the one that would be created by the following process:

此转换所需的输入是XPath节点集。请注意,如果实际输入是由空URI或裸名XPointer取消引用产生的XPath节点集,则注释节点将被忽略。如果实际输入是八位字节流,那么应用程序必须将八位字节流转换为XPath节点集,该节点集适合带有注释的规范XML使用(后续应用所需的规范XML算法将删除这些注释)。换句话说,输入节点集应等同于通过以下过程创建的节点集:

1. Initialize an XPath evaluation context by setting the initial node equal to the input XML document's root node, and set the context position and size to 1. 2. Evaluate the XPath expression (//. | //@* | //namespace::*)

1. 通过将初始节点设置为输入XML文档的根节点,初始化XPath计算上下文,并将上下文位置和大小设置为1。2.计算XPath表达式(//.|//@*|//命名空间::*)

The evaluation of this expression includes all of the document's nodes (including comments) in the node-set representing the octet stream.

此表达式的计算包括表示八位字节流的节点集中文档的所有节点(包括注释)。

The transform output is also an XPath node-set. The XPath expression appearing in the XPath parameter is evaluated once for each node in the input node-set. The result is converted to a boolean. If the boolean is true, then the node is included in the output node-set. If the boolean is false, then the node is omitted from the output node-set.

转换输出也是一个XPath节点集。XPath参数中出现的XPath表达式对输入节点集中的每个节点计算一次。结果将转换为布尔值。如果布尔值为true,则该节点将包含在输出节点集中。如果布尔值为false,则从输出节点集中忽略该节点。

   Note: Even if the input node-set has had comments removed, the
   comment nodes still exist in the underlying parse tree and can
   separate text nodes.  For example, the markup <e>Hello, <!-- comment
   --> world!</e> contains two text nodes.  Therefore, the expression
   self::text()[string()="Hello, world!"] would fail.  Should this
   problem arise in the application, it can be solved by either
   canonicalizing the document before the XPath transform to physically
        
   Note: Even if the input node-set has had comments removed, the
   comment nodes still exist in the underlying parse tree and can
   separate text nodes.  For example, the markup <e>Hello, <!-- comment
   --> world!</e> contains two text nodes.  Therefore, the expression
   self::text()[string()="Hello, world!"] would fail.  Should this
   problem arise in the application, it can be solved by either
   canonicalizing the document before the XPath transform to physically
        

remove the comments or by matching the node based on the parent element's string value (e.g., by using the expression self::text()[string(parent::e)="Hello, world!"]).

删除注释或根据父元素的字符串值匹配节点(例如,使用表达式self::text()[string(parent::e)=“Hello,world!”])。

The primary purpose of this transform is to ensure that only specifically defined changes to the input XML document are permitted after the signature is affixed. This is done by omitting precisely those nodes that are allowed to change once the signature is affixed, and including all other input nodes in the output. It is the responsibility of the XPath expression author to include all nodes whose change could affect the interpretation of the transform output in the application context.

此转换的主要目的是确保在附加签名后,只允许对输入XML文档进行专门定义的更改。这是通过精确地省略那些在附加签名后允许更改的节点,并在输出中包括所有其他输入节点来实现的。XPath表达式作者负责包含其更改可能影响应用程序上下文中转换输出解释的所有节点。

An important scenario would be a document requiring two enveloped signatures. Each signature must omit itself from its own digest calculations, but it is also necessary to exclude the second signature element from the digest calculations of the first signature so that adding the second signature does not break the first signature.

一个重要的情况是需要两个信封签名的文件。每个签名都必须在其自身的摘要计算中省略自身,但还必须从第一个签名的摘要计算中排除第二个签名元素,以便添加第二个签名不会破坏第一个签名。

The XPath transform establishes the following evaluation context for each node of the input node-set:

XPath转换为输入节点集的每个节点建立以下计算上下文:

* A context node equal to a node of the input node-set. * A context position, initialized to 1. * A context size, initialized to 1. * A library of functions equal to the function set defined in XPath plus a function named here. * A set of variable bindings. No means for initializing these is defined. Thus, the set of variable bindings used when evaluating the XPath expression is empty, and use of a variable reference in the XPath expression results in an error. * The set of namespace declarations in scope for the XPath expression.

* 与输入节点集的节点相等的上下文节点。*上下文位置,初始化为1.*上下文大小,初始化为1。*函数库等于XPath中定义的函数集加上此处命名的函数。*一组变量绑定。没有定义初始化这些的方法。因此,计算XPath表达式时使用的变量绑定集为空,在XPath表达式中使用变量引用会导致错误。*XPath表达式作用域中的命名空间声明集。

As a result of the context node setting, the XPath expressions appearing in this transform will be quite similar to those used in used in [XSLT], except that the size and position are always 1 to reflect the fact that the transform is automatically visiting every node (in XSLT, one recursively calls the command apply-templates to visit the nodes of the input tree).

作为上下文节点设置的结果,此转换中出现的XPath表达式与[XSLT]中使用的表达式非常相似,只是大小和位置始终为1,以反映转换自动访问每个节点的事实(在XSLT中,递归调用命令apply templates来访问输入树的节点)。

The function here() is defined as follows:

函数here()的定义如下:

Function: node-set here()

函数:此处设置节点()

The here function returns a node-set containing the attribute or processing instruction node or the parent element of the text node

here函数返回包含属性或处理指令节点或文本节点的父元素的节点集

that directly bears the XPath expression. This expression results in an error if the containing XPath expression does not appear in the same XML document against which the XPath expression is being evaluated.

直接承载XPath表达式的。如果包含的XPath表达式未出现在计算XPath表达式的同一XML文档中,则此表达式将导致错误。

Note: The function definition for here() is intended to be consistent with its definition in XPointer. However, some minor differences are presently being discussed between the Working Groups.

注意:here()的函数定义与XPointer中的定义一致。然而,目前正在讨论工作组之间的一些细微差别。

As an example, consider creating an enveloped signature (a Signature element that is a descendant of an element being signed). Although the signed content should not be changed after signing, the elements within the Signature element are changing (e.g., the digest value must be put inside the DigestValue and the SignatureValue must be subsequently calculated). One way to prevent these changes from invalidating the digest value in DigestValue is to add an XPath Transform that omits all Signature elements and their descendants. For example,

作为一个例子,考虑创建一个包络签名(签名元素,它是被签名的元素的后代)。虽然签名后不应更改签名内容,但签名元素中的元素正在更改(例如,摘要值必须放在摘要值中,并且随后必须计算SignatureValue)。防止这些更改使DigestValue中的摘要值无效的一种方法是添加一个XPath转换,该转换将忽略所有签名元素及其子元素。例如

   <Document>
   <Signature xmlns="&dsig;">
     <SignedInfo>
      ...
       <Reference URI="">
         <Transforms>
           <Transform
             Algorithm="http://www.w3.org/TR/1999/REC-xpath-19991116">
             <XPath xmlns:dsig="&dsig;">
             not(ancestor-or-self::dsig:Signature)
             </XPath>
           </Transform>
         </Transforms>
         <DigestMethod
          Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
         <DigestValue></DigestValue>
       </Reference>
     </SignedInfo>
     <SignatureValue></SignatureValue>
    </Signature>
    ...
   </Document>
        
   <Document>
   <Signature xmlns="&dsig;">
     <SignedInfo>
      ...
       <Reference URI="">
         <Transforms>
           <Transform
             Algorithm="http://www.w3.org/TR/1999/REC-xpath-19991116">
             <XPath xmlns:dsig="&dsig;">
             not(ancestor-or-self::dsig:Signature)
             </XPath>
           </Transform>
         </Transforms>
         <DigestMethod
          Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
         <DigestValue></DigestValue>
       </Reference>
     </SignedInfo>
     <SignatureValue></SignatureValue>
    </Signature>
    ...
   </Document>
        

Due to the null Reference URI in this example, the XPath transform input node-set contains all nodes in the entire parse tree starting at the root node (except the comment nodes). For each node in this node-set, the node is included in the output node-set except if the node or one of its ancestors has a tag of Signature that is in the namespace given by the replacement text for the entity &dsig;.

由于本例中的空引用URI,XPath转换输入节点集包含从根节点开始的整个解析树中的所有节点(注释节点除外)。对于此节点集中的每个节点,该节点都包含在输出节点集中,除非该节点或其祖先之一具有签名标记,该标记位于实体&dsig;的替换文本给定的命名空间中;。

A more elegant solution uses the here function to omit only the Signature containing the XPath Transform, thus allowing enveloped signatures to sign other signatures. In the example above, use the XPath element:

更优雅的解决方案是使用here函数仅省略包含XPath转换的签名,从而允许封装的签名对其他签名进行签名。在上面的示例中,使用XPath元素:

      <XPath xmlns:dsig="&dsig;">
      count(ancestor-or-self::dsig:Signature |
      here()/ancestor::dsig:Signature[1]) >
      count(ancestor-or-self::dsig:Signature)</XPath>
        
      <XPath xmlns:dsig="&dsig;">
      count(ancestor-or-self::dsig:Signature |
      here()/ancestor::dsig:Signature[1]) >
      count(ancestor-or-self::dsig:Signature)</XPath>
        

Since the XPath equality operator converts node sets to string values before comparison, we must instead use the XPath union operator (|). For each node of the document, the predicate expression is true if and only if the node-set containing the node and its Signature element ancestors does not include the enveloped Signature element containing the XPath expression (the union does not produce a larger set if the enveloped Signature element is in the node-set given by ancestor-or-self::Signature).

由于XPath相等运算符在比较之前将节点集转换为字符串值,因此必须改用XPath联合运算符(|)。对于文档的每个节点,当且仅当包含节点及其签名元素祖先的节点集不包含包含XPath表达式的封装签名元素时,谓词表达式才为true(如果封装的签名元素位于祖先或self::Signature给定的节点集中,则联合不会生成更大的集合)。

6.6.4 Enveloped Signature Transform
6.6.4 包络签名变换
   Identifier:
         http://www.w3.org/2000/09/xmldsig#enveloped-signature
        
   Identifier:
         http://www.w3.org/2000/09/xmldsig#enveloped-signature
        

An enveloped signature transform T removes the whole Signature element containing T from the digest calculation of the Reference element containing T. The entire string of characters used by an XML processor to match the Signature with the XML production element is removed. The output of the transform is equivalent to the output that would result from replacing T with an XPath transform containing the following XPath parameter element:

封装签名转换T从包含T的引用元素的摘要计算中删除包含T的整个签名元素。XML处理器用于将签名与XML生成元素匹配的整个字符串将被删除。转换的输出相当于将T替换为包含以下XPath参数元素的XPath转换所产生的输出:

      <XPath xmlns:dsig="&dsig;">
      count(ancestor-or-self::dsig:Signature |
      here()/ancestor::dsig:Signature[1]) >
      count(ancestor-or-self::dsig:Signature)</XPath>
        
      <XPath xmlns:dsig="&dsig;">
      count(ancestor-or-self::dsig:Signature |
      here()/ancestor::dsig:Signature[1]) >
      count(ancestor-or-self::dsig:Signature)</XPath>
        

The input and output requirements of this transform are identical to those of the XPath transform. Note that it is not necessary to use an XPath expression evaluator to create this transform. However, this transform MUST produce output in exactly the same manner as the XPath transform parameterized by the XPath expression above.

此转换的输入和输出要求与XPath转换的输入和输出要求相同。请注意,创建此转换不需要使用XPath表达式计算器。但是,此转换必须以与上面XPath表达式参数化的XPath转换完全相同的方式生成输出。

6.6.5 XSLT Transform
6.6.5 XSLT转换
   Identifier:
         http://www.w3.org/TR/1999/REC-xslt-19991116
        
   Identifier:
         http://www.w3.org/TR/1999/REC-xslt-19991116
        

The normative specification for XSL Transformations is [XSLT]. The XSL style sheet or transform to be evaluated appears as the character content of a transform parameter child element named XSLT. The root element of a XSLT style sheet SHOULD be <xsl:stylesheet>.

XSL转换的标准规范是[XSLT]。要计算的XSL样式表或转换显示为名为XSLT的转换参数子元素的字符内容。XSLT样式表的根元素应该是<xsl:stylesheet>。

This transform requires an octet stream as input. If the actual input is an XPath node-set, then the signature application should attempt to covert it to octets (apply Canonical XML]) as described in the Reference Processing Model (section 4.3.3.2).

此转换需要一个八位元流作为输入。如果实际输入是XPath节点集,则签名应用程序应尝试将其转换为八位字节(应用规范XML),如参考处理模型(第4.3.3.2节)中所述。

The output of this transform is an octet stream. The processing rules for the XSL style sheet or transform element are stated in the XSLT specification [XSLT]. We RECOMMEND that XSLT transformauthors use an output method of xml for XML and HTML. As XSLT implementations do not produce consistent serializations of their output, we further RECOMMEND inserting a transformafter the XSLT transformto perform canonicalize the output. These steps will help to ensure interoperability of the resulting signatures among applications that support the XSLT transform. Note that if the output is actually HTML, then the result of these steps is logically equivalent [XHTML].

此转换的输出是一个八位字节流。XSLT规范[XSLT]中规定了XSL样式表或转换元素的处理规则。我们建议XSLT转换作者对xml和HTML使用xml输出方法。由于XSLT实现不会对其输出产生一致的序列化,因此我们进一步建议在XSLT转换之后插入一个转换来执行输出规范化。这些步骤将有助于确保支持XSLT转换的应用程序之间生成的签名的互操作性。注意,如果输出实际上是HTML,那么这些步骤的结果在逻辑上是等价的[XHTML]。

7.0 XML Canonicalization and Syntax Constraint Considerations
7.0 XML规范化和语法约束注意事项

Digital signatures only work if the verification calculations are performed on exactly the same bits as the signing calculations. If the surface representation of the signed data can change between signing and verification, then some way to standardize the changeable aspect must be used before signing and verification. For example, even for simple ASCII text there are at least three widely used line ending sequences. If it is possible for signed text to be modified from one line ending convention to another between the time of signing and signature verification, then the line endings need to be canonicalized to a standard form before signing and verification or the signatures will break.

只有在验证计算与签名计算完全相同的位上执行时,数字签名才起作用。如果签名数据的表面表示可以在签名和验证之间更改,那么在签名和验证之前必须使用某种方法来标准化可变方面。例如,即使对于简单的ASCII文本,也至少有三种广泛使用的行尾序列。如果在签名和签名验证期间,签名文本可能从一个行尾约定修改为另一个行尾约定,则需要在签名和验证之前将行尾规范化为标准格式,否则签名将中断。

XML is subject to surface representation changes and to processing which discards some surface information. For this reason, XML digital signatures have a provision for indicating canonicalization methods in the signature so that a verifier can use the same canonicalization as the signer.

XML会受到曲面表示更改和丢弃某些曲面信息的处理的影响。因此,XML数字签名具有指示签名中规范化方法的规定,以便验证者可以使用与签名者相同的规范化。

Throughout this specification we distinguish between the canonicalization of a Signature element and other signed XML data objects. It is possible for an isolated XML document to be treated as if it were binary data so that no changes can occur. In that case, the digest of the document will not change and it need not be canonicalized if it is signed and verified as such. However, XML

在本规范中,我们区分签名元素和其他签名XML数据对象的规范化。可以将孤立的XML文档视为二进制数据,这样就不会发生任何更改。在这种情况下,文档摘要将不会更改,并且如果对其进行了签名和验证,则无需对其进行规范化。但是,XML

that is read and processed using standard XML parsing and processing techniques is frequently changed such that some of its surface representation information is lost or modified. In particular, this will occur in many cases for the Signature and enclosed SignedInfo elements since they, and possibly an encompassing XML document, will be processed as XML.

使用标准XML解析和处理技术读取和处理的曲面经常发生更改,导致其某些曲面表示信息丢失或修改。特别是,签名和包含的SignedInfo元素在许多情况下都会发生这种情况,因为它们(可能还有一个包含XML的文档)将作为XML处理。

Similarly, these considerations apply to Manifest, Object, and SignatureProperties elements if those elements have been digested, their DigestValue is to be checked, and they are being processed as XML.

类似地,这些注意事项适用于清单、对象和SignatureProperties元素,如果这些元素已被摘要化,则检查它们的摘要值,并将它们作为XML处理。

The kinds of changes in XML that may need to be canonicalized can be divided into three categories. There are those related to the basic [XML], as described in 7.1 below. There are those related to [DOM], [SAX], or similar processing as described in 7.2 below. And, third, there is the possibility of coded character set conversion, such as between UTF-8 and UTF-16, both of which all [XML] compliant processors are required to support.

XML中可能需要规范化的更改可以分为三类。下面7.1中描述了一些与基本[XML]相关的内容。有一些与[DOM]、[SAX]或下面7.2中所述的类似处理相关。第三,还有编码字符集转换的可能性,例如UTF-8和UTF-16之间的转换,这两种转换都需要所有符合[XML]的处理器支持。

Any canonicalization algorithm should yield output in a specific fixed coded character set. For both the minimal canonicalization defined in this specification and Canonical XML [XML-C14N] that coded character set is UTF-8 (without a byte order mark (BOM)).Neither the minimal canonicalization nor the Canonical XML [XML-C14N] algorithms provide character normalization. We RECOMMEND that signature applications create XML content (Signature elements and their descendents/content) in Normalization Form C [NFC] and check that any XML being consumed is in that form as well (if not, signatures may consequently fail to validate). Additionally, none of these algorithms provide data type normalization. Applications that normalize data types in varying formats (e.g., (true, false) or (1,0)) may not be able to validate each other's signatures.

任何规范化算法都应该在特定的固定编码字符集中产生输出。对于本规范中定义的最小规范化和编码字符集为UTF-8(无字节顺序标记(BOM))的规范化XML[XML-C14N],最小规范化和规范化XML[XML-C14N]算法均未提供字符规范化。我们建议签名应用程序以规范化形式C[NFC]创建XML内容(签名元素及其子代/内容),并检查正在使用的任何XML是否也是该形式(如果不是,签名可能因此无法验证)。此外,这些算法都不提供数据类型规范化。以不同格式(例如,(真、假)或(1,0))规范化数据类型的应用程序可能无法验证彼此的签名。

7.1 XML 1.0, Syntax Constraints, and Canonicalization
7.1 XML 1.0、语法约束和规范化

XML 1.0 [XML] defines an interface where a conformant application reading XML is given certain information from that XML and not other information. In particular,

XML1.0[XML]定义了一个接口,在该接口中,读取XML的一致性应用程序从该XML中获得特定信息,而不是其他信息。特别地,

1. line endings are normalized to the single character #xA by dropping #xD characters if they are immediately followed by a #xA and replacing them with #xA in all other cases, 2. missing attributes declared to have default values are provided to the application as if present with the default value, 3. character references are replaced with the corresponding character,

1. 如果行结尾后面紧跟着一个#xA,则删除#xD字符,并在所有其他情况下将其替换为#xA,从而将行结尾规范化为单个字符#xA,2。向应用程序提供声明为具有默认值的缺失属性,就好像存在默认值3一样。字符引用将替换为相应的字符,

4. entity references are replaced with the corresponding declared entity, 5. attribute values are normalized by A. replacing character and entity references as above, B. replacing occurrences of #x9, #xA, and #xD with #x20 (space) except that the sequence #xD#xA is replaced by a single space, and

4. 实体引用替换为相应的声明实体5。属性值通过以下方式进行规范化:A.如上所述替换字符和实体引用;B.将#x9、#xA和#xD替换为#x20(空格),但序列#xD#xA替换为单个空格;以及

C. if the attribute is not declared to be CDATA, stripping all leading and trailing spaces and replacing all interior runs of spaces with a single space.

C.如果该属性未声明为CDATA,则剥离所有前导和尾随空格,并用单个空格替换所有内部空格。

Note that items (2), (4), and (5C) depend on the presence of a schema, DTD or similar declarations. The Signature element type is laxly schema valid [XML-schema], consequently external XML or even XML within the same document as the signature may be (only) well formed or from another namespace (where permitted by the signature schema); the noted items may not be present. Thus, a signature with such content will only be verifiable by other signature applications if the following syntax constraints are observed when generating any signed material including the SignedInfo element:

Note that items (2), (4), and (5C) depend on the presence of a schema, DTD or similar declarations. The Signature element type is laxly schema valid [XML-schema], consequently external XML or even XML within the same document as the signature may be (only) well formed or from another namespace (where permitted by the signature schema); the noted items may not be present. Thus, a signature with such content will only be verifiable by other signature applications if the following syntax constraints are observed when generating any signed material including the SignedInfo element:translate error, please retry

1. attributes having default values be explicitly present, 2. all entity references (except "amp", "lt", "gt", "apos", "quot", and other character entities not representable in the encoding chosen) be expanded, 3. attribute value white space be normalized

1. 具有默认值的属性必须显式存在,2。所有实体引用(除“amp”、“lt”、“gt”、“apos”、“quot”和所选编码中不可表示的其他字符实体)均应展开,3。属性值空白必须规范化

7.2 DOM/SAX Processing and Canonicalization
7.2 DOM/SAX处理和规范化

In addition to the canonicalization and syntax constraints discussed above, many XML applications use the Document Object Model [DOM] or The Simple API for XML [SAX]. DOM maps XML into a tree structure of nodes and typically assumes it will be used on an entire document with subsequent processing being done on this tree. SAX converts XML into a series of events such as a start tag, content, etc. In either case, many surface characteristics such as the ordering of attributes and insignificant white space within start/end tags is lost. In addition, namespace declarations are mapped over the nodes to which they apply, losing the namespace prefixes in the source text and, in most cases, losing where namespace declarations appeared in the original instance.

除了上面讨论的规范化和语法约束之外,许多XML应用程序还使用文档对象模型[DOM]或XML的简单API[SAX]。DOM将XML映射到一个节点树结构中,通常假定它将用于整个文档,并在此树上进行后续处理。SAX将XML转换为一系列事件,如开始标记、内容等。在这两种情况下,许多表面特征(如属性顺序和开始/结束标记中不重要的空白)都会丢失。此外,命名空间声明映射到它们所应用的节点上,会丢失源文本中的命名空间前缀,并且在大多数情况下,会丢失命名空间声明在原始实例中出现的位置。

If an XML Signature is to be produced or verified on a system using the DOM or SAX processing, a canonical method is needed to serialize the relevant part of a DOM tree or sequence of SAX events. XML canonicalization specifications, such as [XML-C14N], are based only on information which is preserved by DOM and SAX. For an XML

如果要在使用DOM或SAX处理的系统上生成或验证XML签名,则需要一个规范方法来序列化DOM树的相关部分或SAX事件序列。XML规范化规范(如[XML-C14N])仅基于DOM和SAX保存的信息。对于XML

Signature to be verifiable by an implementation using DOM or SAX, not only must the XML1.0 syntax constraints given in the previous section be followed but an appropriate XML canonicalization MUST be specified so that the verifier can re-serialize DOM/SAX mediated input into the same octect stream that was signed.

要通过使用DOM或SAX的实现验证签名,不仅必须遵循上一节中给出的XML1.0语法约束,而且必须指定适当的XML规范化,以便验证器可以将DOM/SAX介导的输入重新序列化到已签名的同一个八位元流中。

8.0 Security Considerations
8.0 安全考虑

The XML Signature specification provides a very flexible digital signature mechanism. Implementors must give consideration to their application threat models and to the following factors.

XML签名规范提供了非常灵活的数字签名机制。实现者必须考虑他们的应用程序威胁模型和以下因素。

8.1 Transforms
8.1 转变

A requirement of this specification is to permit signatures to "apply to a part or totality of a XML document." (See [XML-Signature-RD, section 3.1.3].) The Transforms mechanism meets this requirement by permitting one to sign data derived from processing the content of the identified resource. For instance, applications that wish to sign a form, but permit users to enter limited field data without invalidating a previous signature on the form might use [XPath] to exclude those portions the user needs to change. Transforms may be arbitrarily specified and may include encoding transforms, canonicalization instructions or even XSLT transformations. Three cautions are raised with respect to this feature in the following sections.

本规范的一项要求是允许签名“应用于XML文档的一部分或全部。”(请参见[XML签名RD,第3.1.3节])。转换机制通过允许对从处理已标识资源的内容派生的数据进行签名来满足此要求。例如,希望对表单进行签名,但允许用户输入有限字段数据而不使表单上以前的签名无效的应用程序可能会使用[XPath]排除用户需要更改的部分。转换可以任意指定,可以包括编码转换、规范化指令甚至XSLT转换。在以下章节中提出了有关此功能的三个注意事项。

Note, core validation behavior does not confirm that the signed data was obtained by applying each step of the indicated transforms. (Though it does check that the digest of the resulting content matches that specified in the signature.) For example, some application may be satisfied with verifying an XML signature over a cached copy of already transformed data. Other applications might require that content be freshly dereferenced and transformed.

注意,核心验证行为并不确认签名数据是通过应用指定转换的每个步骤获得的。(尽管它会检查结果内容的摘要是否与签名中指定的内容匹配。)例如,某些应用程序可能会满足于在已转换数据的缓存副本上验证XML签名。其他应用程序可能需要新的内容取消引用和转换。

8.1.1 Only What is Signed is Secure
8.1.1 只有签名的才是安全的

First, obviously, signatures over a transformed document do not secure any information discarded by transforms: only what is signed is secure.

首先,显然,转换文档上的签名不会保护转换丢弃的任何信息:只有签名的内容才是安全的。

Note that the use of Canonical XML [XML-C14N] ensures that all internal entities and XML namespaces are expanded within the content being signed. All entities are replaced with their definitions and the canonical form explicitly represents the namespace that an element would otherwise inherit. Applications that do not canonicalize XML content (especially the SignedInfo element) SHOULD

注意,使用规范XML[XML-C14N]可以确保所有内部实体和XML名称空间都在被签名的内容中展开。所有实体都被它们的定义替换,规范形式显式表示元素将继承的名称空间。不规范化XML内容(特别是SignedInfo元素)的应用程序应该

NOT use internal entities and SHOULD represent the namespace explicitly within the content being signed since they can not rely upon canonicalization to do this for them.

不使用内部实体,并且应该在被签名的内容中显式地表示名称空间,因为它们不能依赖规范化来为它们执行此操作。

8.1.2 Only What is "Seen" Should be Signed
8.1.2 只有“看到的”才应该签字

Additionally, the signature secures any information introduced by the transform: only what is "seen" (that which is represented to the user via visual, auditory or other media) should be signed. If signing is intended to convey the judgment or consent of a user (an automated mechanism or person), then it is normally necessary to secure as exactly as practical the information that was presented to that user. Note that this can be accomplished by literally signing what was presented, such as the screen images shown a user. However, this may result in data which is difficult for subsequent software to manipulate. Instead, one can sign the data along with whatever filters, style sheets, client profile or other information that affects its presentation.

此外,签名保护转换引入的任何信息:只有“看到的”(通过视觉、听觉或其他媒体向用户表示的)应该被签名。如果签名旨在传达用户(自动机制或个人)的判断或同意,则通常需要尽可能准确地保护呈现给该用户的信息。请注意,这可以通过对呈现的内容(例如用户显示的屏幕图像)进行逐字签名来实现。但是,这可能会导致后续软件难以操作数据。相反,可以对数据以及影响其表示的任何过滤器、样式表、客户机配置文件或其他信息进行签名。

8.1.3 "See" What is Signed
8.1.3 “看”什么是签名

Just as a user should only sign what it "sees," persons and automated mechanisms that trust the validity of a transformed document on the basis of a valid signature should operate over the data that was transformed (including canonicalization) and signed, not the original pre-transformed data. This recommendation applies to transforms specified within the signature as well as those included as part of the document itself. For instance, if an XML document includes an embedded style sheet [XSLT] it is the transformed document that that should be represented to the user and signed. To meet this recommendation where a document references an external style sheet, the content of that external resource should also be signed as via a signature Reference -- otherwise the content of that external content might change which alters the resulting document without invalidating the signature.

正如用户应该只对“看到的”进行签名一样,基于有效签名信任转换文档有效性的人员和自动机制应该对转换(包括规范化)和签名的数据进行操作,而不是原始的预转换数据。本建议适用于签名中指定的转换以及作为文档本身一部分包含的转换。例如,如果XML文档包含嵌入样式表[XSLT],则应向用户表示并签名的是转换后的文档。为了在文档引用外部样式表时满足此建议,还应通过签名引用对该外部资源的内容进行签名,否则该外部内容的内容可能会更改,从而在不使签名无效的情况下更改生成的文档。

Some applications might operate over the original or intermediary data but should be extremely careful about potential weaknesses introduced between the original and transformed data. This is a trust decision about the character and meaning of the transforms that an application needs to make with caution. Consider a canonicalization algorithm that normalizes character case (lower to upper) or character composition ('e and accent' to 'accented-e'). An adversary could introduce changes that are normalized and consequently inconsequential to signature validity but material to a DOM processor. For instance, by changing the case of a character one might influence the result of an XPath selection. A serious risk is introduced if that change is normalized for signature validation but

有些应用程序可能在原始数据或中间数据上运行,但应特别小心原始数据和转换数据之间引入的潜在弱点。这是一个关于应用程序需要谨慎进行的转换的性质和意义的信任决策。考虑一个规范化算法,将字符格(下到上)或字符合成(E和重音)“AccTETE-E”标准化。对手可以引入规范化的更改,从而对签名有效性无关紧要,但对DOM处理器来说却很重要。例如,更改字符的大小写可能会影响XPath选择的结果。如果为了签名验证而对更改进行规范化,但

the processor operates over the original data and returns a different result than intended. Consequently, while we RECOMMEND all documents operated upon and generated by signature applications be in [NFC] (otherwise intermediate processors might unintentionally break the signature) encoding normalizations SHOULD NOT be done as part of a signature transform, or (to state it another way) if normalization does occur, the application SHOULD always "see" (operate over) the normalized form.

处理器对原始数据进行操作,并返回与预期不同的结果。因此,虽然我们建议签名应用程序所操作和生成的所有文档都采用[NFC](否则中间处理器可能会无意中破坏签名)编码规范化不应作为签名转换的一部分进行,或者(以另一种方式)如果发生规范化,应用程序应始终“查看”(操作)规范化表单。

8.2 Check the Security Model
8.2 检查安全模型

This specification uses public key signatures and keyed hash authentication codes. These have substantially different security models. Furthermore, it permits user specified algorithms which may have other models.

本规范使用公钥签名和密钥哈希认证码。它们有着本质上不同的安全模型。此外,它允许用户指定的算法,这些算法可能具有其他模型。

With public key signatures, any number of parties can hold the public key and verify signatures while only the parties with the private key can create signatures. The number of holders of the private key should be minimized and preferably be one. Confidence by verifiers in the public key they are using and its binding to the entity or capabilities represented by the corresponding private key is an important issue, usually addressed by certificate or online authority systems.

使用公钥签名,任何数量的参与方都可以持有公钥并验证签名,而只有拥有私钥的参与方才能创建签名。私钥持有者的数量应该最小化,最好是一个。验证者对其使用的公钥的信任度及其与相应私钥所代表的实体或功能的绑定是一个重要问题,通常由证书或在线授权系统解决。

Keyed hash authentication codes, based on secret keys, are typically much more efficient in terms of the computational effort required but have the characteristic that all verifiers need to have possession of the same key as the signer. Thus any verifier can forge signatures.

基于密钥的密钥散列认证码通常在所需计算量方面更有效,但具有所有验证者需要拥有与签名者相同的密钥的特征。因此,任何验证者都可以伪造签名。

This specification permits user provided signature algorithms and keying information designators. Such user provided algorithms may have different security models. For example, methods involving biometrics usually depend on a physical characteristic of the authorized user that can not be changed the way public or secret keys can be and may have other security model differences.

本规范允许用户提供签名算法和密钥信息指示符。此类用户提供的算法可能具有不同的安全模型。例如,涉及生物测定的方法通常依赖于授权用户的物理特征,该物理特征不能像公钥或密钥那样改变,并且可能具有其他安全模型差异。

8.3 Algorithms, Key Lengths, Certificates, Etc.

8.3 算法、密钥长度、证书等。

The strength of a particular signature depends on all links in the security chain. This includes the signature and digest algorithms used, the strength of the key generation [RANDOM] and the size of the key, the security of key and certificate authentication and distribution mechanisms, certificate chain validation policy, protection of cryptographic processing from hostile observation and tampering, etc.

特定签名的强度取决于安全链中的所有链接。这包括所使用的签名和摘要算法、密钥生成的强度[随机]和密钥的大小、密钥和证书身份验证和分发机制的安全性、证书链验证策略、保护密码处理免受恶意观察和篡改等。

Care must be exercised by applications in executing the various algorithms that may be specified in an XML signature and in the processing of any "executable content" that might be provided to such algorithms as parameters, such as XSLT transforms. The algorithms specified in this document will usually be implemented via a trusted library but even there perverse parameters might cause unacceptable processing or memory demand. Even more care may be warranted with application defined algorithms.

应用程序在执行可能在XML签名中指定的各种算法时,以及在处理可能作为参数提供给这些算法(如XSLT转换)的任何“可执行内容”时,必须小心谨慎。本文档中指定的算法通常通过受信任的库实现,但即使存在不正确的参数,也可能导致不可接受的处理或内存需求。应用程序定义的算法可能需要更加小心。

The security of an overall system will also depend on the security and integrity of its operating procedures, its personnel, and on the administrative enforcement of those procedures. All the factors listed in this section are important to the overall security of a system; however, most are beyond the scope of this specification.

整个系统的安全性还取决于其操作程序、人员的安全性和完整性,以及这些程序的行政执行。本节列出的所有因素对系统的整体安全性都很重要;然而,大多数都超出了本规范的范围。

9.0 Schema, DTD, Data Model, and Valid Examples
9.0 模式、DTD、数据模型和有效示例

XML Signature Schema Instance http://www.w3.org/TR/2000/CR-xmldsig-core-20001031/xmldsig-core-schema.xsd Valid XML schema instance based on the 20000922 Schema/DTD [XML-Schema].

XML签名模式实例http://www.w3.org/TR/2000/CR-xmldsig-core-20001031/xmldsig-core-schema.xsd 基于20000922模式/DTD[XML模式]的有效XML模式实例。

   XML Signature DTD
         http://www.w3.org/TR/2000/CR-xmldsig-core-20001031/xmldsig-
           core-schema.dtd
        
   XML Signature DTD
         http://www.w3.org/TR/2000/CR-xmldsig-core-20001031/xmldsig-
           core-schema.dtd
        
   RDF Data Model
         http://www.w3.org/TR/2000/CR-xmldsig-core-20001031/xmldsig-
           datamodel-20000112.gif
        
   RDF Data Model
         http://www.w3.org/TR/2000/CR-xmldsig-core-20001031/xmldsig-
           datamodel-20000112.gif
        

XML Signature Object Example http://www.w3.org/TR/2000/CR-xmldsig-core-20001031/signature-example.xml A cryptographical invalid XML example that includes foreign content and validates under the schema. (It validates under the DTD when the foreign content is removed or the DTD is modified accordingly).

XML签名对象示例http://www.w3.org/TR/2000/CR-xmldsig-core-20001031/signature-example.xml 包含外来内容并在架构下验证的加密无效XML示例。(当删除外来内容或相应修改DTD时,它在DTD下进行验证)。

RSA XML Signature Example http://www.w3.org/TR/2000/CR-xmldsig-core-20001031/signature-example-rsa.xml An XML Signature example with generated cryptographic values by Merlin Hughes and validated by Gregor Karlinger.

RSA XML签名示例http://www.w3.org/TR/2000/CR-xmldsig-core-20001031/signature-example-rsa.xml Merlin Hughes生成的加密值的XML签名示例,由Gregor Karlinger验证。

DSA XML Signature Example http://www.w3.org/TR/2000/CR-xmldsig-core-20001031/signature-example-dsa.xml Similar to above but uses DSA.

DSAXML签名示例http://www.w3.org/TR/2000/CR-xmldsig-core-20001031/signature-example-dsa.xml 与上述类似,但使用DSA。

10.0 Definitions
10.0 定义

Authentication Code A value generated from the application of a shared key to a message via a cryptographic algorithm such that it has the properties of message authentication (integrity) but not signer authentication

身份验证代码通过加密算法将共享密钥应用于消息时生成的值,使其具有消息身份验证(完整性)的属性,但不具有签名者身份验证的属性

Authentication, Message "A signature should identify what is signed, making it impracticable to falsify or alter either the signed matter or the signature without detection." [Digital Signature Guidelines, ABA]

认证,信息“签名应识别签名内容,使在未经检测的情况下伪造或更改签名内容或签名不切实际。”[数字签名指南,ABA]

Authentication, Signer "A signature should indicate who signed a document, message or record, and should be difficult for another person to produce without authorization." [Digital Signature Guidelines, ABA]

身份验证,签名者“签名应表明谁签署了文件、消息或记录,并且其他人在未经授权的情况下很难出示该签名。”[数字签名指南,ABA]

Core The syntax and processing defined by this specification, including core validation. We use this term to distinguish other markup, processing, and applications semantics from our own.

Core本规范定义的语法和处理,包括核心验证。我们使用这个术语来区分其他标记、处理和应用程序语义与我们自己的语义。

Data Object (Content/Document) The actual binary/octet data being operated on (transformed, digested, or signed) by an application -- frequently an HTTP entity [HTTP]. Note that the proper noun Object designates a specific XML element. Occasionally we refer to a data object as a document or as a resource's content. The term element content is used to describe the data between XML start and end tags [XML]. The term XML document is used to describe data objects which conform to the XML specification [XML].

数据对象(内容/文档)由应用程序操作(转换、摘要或签名)的实际二进制/八位字节数据——通常是HTTP实体[HTTP]。请注意,专有名词对象指定一个特定的XML元素。有时,我们将数据对象称为文档或资源的内容。术语元素内容用于描述XML开始标记和结束标记[XML]之间的数据。术语XML文档用于描述符合XML规范[XML]的数据对象。

Integrity The inability to change a message without also changing the signature value. See message authentication.

完整性—在不更改签名值的情况下无法更改消息。请参阅消息身份验证。

Object An XML Signature element wherein arbitrary (non-core) data may be placed. An Object element is merely one type of digital data (or document) that can be signed via a Reference.

对象可以放置任意(非核心)数据的XML签名元素。对象元素只是一种可以通过引用进行签名的数字数据(或文档)。

Resource "A resource can be anything that has identity. Familiar examples include an electronic document, an image, a service (e.g., 'today's weather report for Los Angeles'), and a

资源“资源可以是任何具有身份的东西。常见的例子包括电子文档、图像、服务(例如,“今日洛杉矶天气报告”)和

         collection of other resources....  The resource is the
         conceptual mapping to an entity or set of entities, not
         necessarily the entity which corresponds to that mapping at any
         particular instance in time.  Thus, a resource can remain
         constant even when its content---the entities to which it
         currently corresponds---changes over time, provided that the
         conceptual mapping is not changed in the process." [URI] In
         order to avoid a collision of the term entity within the URI
         and XML specifications, we use the term data object, content or
         document to refer to the actual bits being operated upon.
        
         collection of other resources....  The resource is the
         conceptual mapping to an entity or set of entities, not
         necessarily the entity which corresponds to that mapping at any
         particular instance in time.  Thus, a resource can remain
         constant even when its content---the entities to which it
         currently corresponds---changes over time, provided that the
         conceptual mapping is not changed in the process." [URI] In
         order to avoid a collision of the term entity within the URI
         and XML specifications, we use the term data object, content or
         document to refer to the actual bits being operated upon.
        

Signature Formally speaking, a value generated from the application of a private key to a message via a cryptographic algorithm such that it has the properties of signer authentication and message authentication (integrity). (However, we sometimes use the term signature generically such that it encompasses Authentication Code values as well, but we are careful to make the distinction when the property of signer authentication is relevant to the exposition.) A signature may be (non-exclusively) described as detached, enveloping, or enveloped.

从形式上讲,签名是通过加密算法将私钥应用于消息而产生的一种值,它具有签名者身份验证和消息身份验证(完整性)的特性。(然而,我们有时一般使用术语签名,以便它也包含身份验证码值,但我们注意在签名者身份验证的属性与公开相关时进行区分。)签名可以(非排他性地)描述为分离、封装或封装。

Signature, Application An application that implements the MANDATORY (REQUIRED/MUST) portions of this specification; these conformance requirements are over the structure of the Signature element type and its children (including SignatureValue) and mandatory to support algorithms.

签名、申请——实施本规范强制性(必需/必须)部分的申请;这些一致性要求覆盖签名元素类型及其子元素(包括SignatureValue)的结构,并且是支持算法所必需的。

Signature, Detached The signature is over content external to the Signature element, and can be identified via a URI or transform. Consequently, the signature is "detached" from the content it signs. This definition typically applies to separate data objects, but it also includes the instance where the Signature and data object reside within the same XML document but are sibling elements.

签名,分离签名位于签名元素外部的内容上,可以通过URI或转换进行标识。因此,签名与它所签名的内容“分离”。此定义通常适用于单独的数据对象,但也包括签名和数据对象位于同一XML文档中但为同级元素的实例。

Signature, Enveloping The signature is over content found within an Object element of the signature itself. The Object(or its content) is identified via a Reference (via a URI fragment identifier or transform).

签名,将签名封装在签名本身的对象元素中的内容之上。对象(或其内容)通过引用(通过URI片段标识符或转换)进行标识。

Signature, Enveloped The signature is over the XML content that contains the signature as an element. The content provides the root XML

签名,封装签名位于包含签名作为元素的XML内容之上。内容提供了根XML

document element. Obviously, enveloped signatures must take care not to include their own value in the calculation of the SignatureValue.

文档元素。显然,封装签名必须注意不要在SignatureValue的计算中包含它们自己的值。

Transform The processing of a octet stream from source content to derived content. Typical transforms include XML Canonicalization, XPath, and XSLT.

将八位字节流的处理从源内容转换为派生内容。典型的转换包括XML规范化、XPath和XSLT。

Validation, Core The core processing requirements of this specification requiring signature validation and SignedInfo reference validation.

验证、核心要求本规范的核心处理要求,要求签名验证和签名信息参考验证。

Validation, Reference The hash value of the identified and transformed content, specified by Reference, matches its specified DigestValue.

Validation,Reference通过引用指定的已标识和转换内容的哈希值与其指定的DigestValue匹配。

Validation, Signature The SignatureValue matches the result of processing SignedInfo with CanonicalizationMethod and SignatureMethod as specified in Core Validation (section 3.2).

验证、签名SignatureValue与核心验证(第3.2节)中规定的规范化方法和签名方法处理SignedInfo的结果相匹配。

Validation, Trust/Application The application determines that the semantics associated with a signature are valid. For example, an application may validate the time stamps or the integrity of the signer key -- though this behavior is external to this core specification.

验证、信任/应用程序应用程序确定与签名关联的语义有效。例如,应用程序可以验证时间戳或签名者密钥的完整性——尽管此行为不属于此核心规范。

11.0 References
11.0 工具书类
   ABA               Digital Signature Guidelines.
                     http://www.abanet.org/scitech/ec/isc/dsgfree.html
        
   ABA               Digital Signature Guidelines.
                     http://www.abanet.org/scitech/ec/isc/dsgfree.html
        
   Bourret           Declaring Elements and Attributes in an XML DTD.
                     Ron Bourret.  http://www.informatik.tu-
                     darmstadt.de/DVS1/staff/bourret/xml/xmldtd.html
        
   Bourret           Declaring Elements and Attributes in an XML DTD.
                     Ron Bourret.  http://www.informatik.tu-
                     darmstadt.de/DVS1/staff/bourret/xml/xmldtd.html
        

DOM Document Object Model (DOM) Level 1 Specification. W3C Recommendation. V. Apparao, S. Byrne, M. Champion, S. Isaacs, I. Jacobs, A. Le Hors, G. Nicol, J. Robie, R. Sutor, C. Wilson, L. Wood. October 1998. http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/

DOM文档对象模型(DOM)级别1规范。W3C建议。V.Apparao、S.Byrne、M.Champion、S.Isaacs、I.Jacobs、A.Le Hors、G.Nicol、J.Robie、R.Sutor、C.Wilson、L.Wood。1998年10月。http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/

   DSS               FIPS PUB 186-1. Digital Signature Standard (DSS).
                     U.S. Department of Commerce/National Institute of
                     Standards and Technology.
                     http://csrc.nist.gov/fips/fips1861.pdf
        
   DSS               FIPS PUB 186-1. Digital Signature Standard (DSS).
                     U.S. Department of Commerce/National Institute of
                     Standards and Technology.
                     http://csrc.nist.gov/fips/fips1861.pdf
        
   HMAC              Krawczyk, H., Bellare, M. and R. Canetti, "HMAC:
                     Keyed-Hashing for Message Authentication", RFC
                     2104, February 1997.
                     http://www.ietf.org/rfc/rfc2104.txt
        
   HMAC              Krawczyk, H., Bellare, M. and R. Canetti, "HMAC:
                     Keyed-Hashing for Message Authentication", RFC
                     2104, February 1997.
                     http://www.ietf.org/rfc/rfc2104.txt
        
   HTTP              Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
                     Masinter, L., Leach, P. and T. Berners-Lee,
                     "Hypertext Transfer Protocol -- HTTP/1.1", RFC
                     2616, June 1999.
                     http://www.ietf.org/rfc/rfc2616.txt
        
   HTTP              Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
                     Masinter, L., Leach, P. and T. Berners-Lee,
                     "Hypertext Transfer Protocol -- HTTP/1.1", RFC
                     2616, June 1999.
                     http://www.ietf.org/rfc/rfc2616.txt
        
   KEYWORDS          Bradner, S., "Key words for use in RFCs to Indicate
                     Requirement Levels", BCP 14, RFC 2119, March 1997.
                     http://www.ietf.org/rfc/rfc2119.txt
        
   KEYWORDS          Bradner, S., "Key words for use in RFCs to Indicate
                     Requirement Levels", BCP 14, RFC 2119, March 1997.
                     http://www.ietf.org/rfc/rfc2119.txt
        
   LDAP-DN           Wahl, M., Kille, S. and T. Howes, "Lightweight
                     Directory Access Protocol (v3): UTF-8 String
                     Representation of Distinguished Names", RFC 2253,
                     December 1997.  http://www.ietf.org/rfc/rfc2253.txt
        
   LDAP-DN           Wahl, M., Kille, S. and T. Howes, "Lightweight
                     Directory Access Protocol (v3): UTF-8 String
                     Representation of Distinguished Names", RFC 2253,
                     December 1997.  http://www.ietf.org/rfc/rfc2253.txt
        
   MD5               Rivest, R., "The MD5 Message-Digest Algorithm", RFC
                     1321, April 1992.
                     http://www.ietf.org/rfc/rfc1321.txt
        
   MD5               Rivest, R., "The MD5 Message-Digest Algorithm", RFC
                     1321, April 1992.
                     http://www.ietf.org/rfc/rfc1321.txt
        
   MIME              Freed, N. and N. Borenstein, "Multipurpose Internet
                     Mail Extensions (MIME) Part One: Format of Internet
                     Message Bodies", RFC 2045, November 1996.
                     http://www.ietf.org/rfc/rfc2045.txt
        
   MIME              Freed, N. and N. Borenstein, "Multipurpose Internet
                     Mail Extensions (MIME) Part One: Format of Internet
                     Message Bodies", RFC 2045, November 1996.
                     http://www.ietf.org/rfc/rfc2045.txt
        

NFC TR15. Unicode Normalization Forms. M. Davis, M. Drst. Revision 18: November 1999.

NFC TR15。Unicode规范化表单。戴维斯先生,博士。第18次修订:1999年11月。

   PGP               Callas, J., Donnerhacke, L., Finney, H. and R.
                     Thayer, "OpenPGP Message Format", November 1998.
                     http://www.ietf.org/rfc/rfc2440.txt
        
   PGP               Callas, J., Donnerhacke, L., Finney, H. and R.
                     Thayer, "OpenPGP Message Format", November 1998.
                     http://www.ietf.org/rfc/rfc2440.txt
        

RANDOM Eastlake, D., Crocker, S. and J. Schiller, "Randomness Recommendations for Security", RFC 1750, December 1994. http://www.ietf.org/rfc/rfc1750.txt

RANDOM Eastlake,D.,Crocker,S.和J.Schiller,“安全的随机性建议”,RFC 1750,1994年12月。http://www.ietf.org/rfc/rfc1750.txt

   RDF               RDF Schema W3C Candidate Recommendation. D.
                     Brickley, R.V. Guha. March 2000.
                     http://www.w3.org/TR/2000/CR-rdf-schema-20000327/
                     RDF Model and Syntax W3C Recommendation. O.
                     Lassila, R. Swick. February 1999.
                     http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
        
   RDF               RDF Schema W3C Candidate Recommendation. D.
                     Brickley, R.V. Guha. March 2000.
                     http://www.w3.org/TR/2000/CR-rdf-schema-20000327/
                     RDF Model and Syntax W3C Recommendation. O.
                     Lassila, R. Swick. February 1999.
                     http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
        

1363 IEEE 1363: Standard Specifications for Public Key Cryptography. August 2000.

1363 IEEE 1363:公钥加密的标准规范。2000年8月。

   PKCS1             Kaliski, B. and J. Staddon, "PKCS #1: RSA
                     Cryptography Specifications Version 2.0", RFC 2437,
                     October 1998.  http://www.ietf.org/rfc/rfc2437.txt
        
   PKCS1             Kaliski, B. and J. Staddon, "PKCS #1: RSA
                     Cryptography Specifications Version 2.0", RFC 2437,
                     October 1998.  http://www.ietf.org/rfc/rfc2437.txt
        
   SAX               SAX: The Simple API for XML David Megginson et. al.
                     May 1998.  http://www.megginson.com/SAX/index.html
        
   SAX               SAX: The Simple API for XML David Megginson et. al.
                     May 1998.  http://www.megginson.com/SAX/index.html
        
   SHA-1             FIPS PUB 180-1. Secure Hash Standard. U.S.
                     Department of Commerce/National Institute of
                     Standards and Technology.
                     http://csrc.nist.gov/fips/fip180-1.pdf
        
   SHA-1             FIPS PUB 180-1. Secure Hash Standard. U.S.
                     Department of Commerce/National Institute of
                     Standards and Technology.
                     http://csrc.nist.gov/fips/fip180-1.pdf
        
   Unicode           The Unicode Consortium. The Unicode Standard.
                     http://www.unicode.org/unicode/standard/standard.html
        
   Unicode           The Unicode Consortium. The Unicode Standard.
                     http://www.unicode.org/unicode/standard/standard.html
        
   UTF-16            Hoffman, P. and F. Yergeau, "UTF-16, an encoding of
                     ISO 10646", RFC 2781, February 2000.
                     http://www.ietf.org/rfc/rfc2781.txt
        
   UTF-16            Hoffman, P. and F. Yergeau, "UTF-16, an encoding of
                     ISO 10646", RFC 2781, February 2000.
                     http://www.ietf.org/rfc/rfc2781.txt
        
   UTF-8             Yergeau, F., "UTF-8, a transformation format of ISO
                     10646", RFC 2279, January 1998.
                     http://www.ietf.org/rfc/rfc2279.txt
        
   UTF-8             Yergeau, F., "UTF-8, a transformation format of ISO
                     10646", RFC 2279, January 1998.
                     http://www.ietf.org/rfc/rfc2279.txt
        
   URI               Berners-Lee, T., Fielding, R. and L. Masinter,
                     "Uniform Resource Identifiers (URI): Generic
                     Syntax", RFC 2396, August 1998.
                     http://www.ietf.org/rfc/rfc2396.txt
        
   URI               Berners-Lee, T., Fielding, R. and L. Masinter,
                     "Uniform Resource Identifiers (URI): Generic
                     Syntax", RFC 2396, August 1998.
                     http://www.ietf.org/rfc/rfc2396.txt
        
   URI-Literal       Hinden, R., Carpenter, B. and L. Masinter, "Format
                     for Literal IPv6 Addresses in URL's", RFC 2732,
                     December 1999.  http://www.ietf.org/rfc/rfc2732.txt
        
   URI-Literal       Hinden, R., Carpenter, B. and L. Masinter, "Format
                     for Literal IPv6 Addresses in URL's", RFC 2732,
                     December 1999.  http://www.ietf.org/rfc/rfc2732.txt
        
   URL               Berners-Lee, T., Masinter, L. and M. McCahill,
                     "Uniform Resource Locators (URL)", RFC 1738,
                     December 1994.  http://www.ietf.org/rfc/rfc1738.txt
        
   URL               Berners-Lee, T., Masinter, L. and M. McCahill,
                     "Uniform Resource Locators (URL)", RFC 1738,
                     December 1994.  http://www.ietf.org/rfc/rfc1738.txt
        
   URN               Moats, R., "URN Syntax" RFC 2141, May 1997.
                     http://www.ietf.org/rfc/rfc2141.txt
        
   URN               Moats, R., "URN Syntax" RFC 2141, May 1997.
                     http://www.ietf.org/rfc/rfc2141.txt
        

Daigle, L., van Gulik, D., Iannella, R. and P. Faltstrom, "URN Namespace Definition Mechanisms", RFC 2611, June 1999. http://www.ietf.org/rfc/rfc2611.txt

Daigle,L.,van Gulik,D.,Iannella,R.和P.Faltstrom,“URN命名空间定义机制”,RFC 26111999年6月。http://www.ietf.org/rfc/rfc2611.txt

X509v3 ITU-T Recommendation X.509 version 3 (1997). "Information Technology - Open Systems Interconnection - The Directory Authentication Framework" ISO/IEC 9594-8:1997.

X509v3 ITU-T建议X.509第3版(1997年)。“信息技术.开放系统互连.目录认证框架”ISO/IEC 9594-8:1997。

   XHTML 1.0         XHTML(tm) 1.0: The Extensible Hypertext Markup
                     Language Recommendation. S. Pemberton, D. Raggett,
                     et. al. January 2000.
                     http://www.w3.org/TR/2000/REC-xhtml1-20000126/
        
   XHTML 1.0         XHTML(tm) 1.0: The Extensible Hypertext Markup
                     Language Recommendation. S. Pemberton, D. Raggett,
                     et. al. January 2000.
                     http://www.w3.org/TR/2000/REC-xhtml1-20000126/
        
   XLink             XML Linking Language. Working Draft. S. DeRose, D.
                     Orchard, B. Trafford. July 1999.
                     http://www.w3.org/1999/07/WD-xlink-19990726
        
   XLink             XML Linking Language. Working Draft. S. DeRose, D.
                     Orchard, B. Trafford. July 1999.
                     http://www.w3.org/1999/07/WD-xlink-19990726
        
   XML               Extensible Markup Language (XML) 1.0
                     Recommendation. T. Bray, J. Paoli, C. M. Sperberg-
                     McQueen. February 1998.
                     http://www.w3.org/TR/1998/REC-xml-19980210
        
   XML               Extensible Markup Language (XML) 1.0
                     Recommendation. T. Bray, J. Paoli, C. M. Sperberg-
                     McQueen. February 1998.
                     http://www.w3.org/TR/1998/REC-xml-19980210
        
   XML-C14N          J. Boyer, "Canonical XML Version 1.0", RFC 3076,
                     September 2000.  http://www.w3.org/TR/2000/CR-xml-
                     c14n-20001026
                     http://www.ietf.org/rfc/rfc3076.txt
        
   XML-C14N          J. Boyer, "Canonical XML Version 1.0", RFC 3076,
                     September 2000.  http://www.w3.org/TR/2000/CR-xml-
                     c14n-20001026
                     http://www.ietf.org/rfc/rfc3076.txt
        
   XML-Japanese      XML Japanese Profile. W3C NOTE. M. MURATA April
                     2000 http://www.w3.org/TR/2000/NOTE-japanese-xml-
                     20000414/
        
   XML-Japanese      XML Japanese Profile. W3C NOTE. M. MURATA April
                     2000 http://www.w3.org/TR/2000/NOTE-japanese-xml-
                     20000414/
        
   XML-MT            Whitehead, E. and M. Murata, "XML Media Types",
                     July 1998.  http://www.ietf.org/rfc/rfc2376.txt
        
   XML-MT            Whitehead, E. and M. Murata, "XML Media Types",
                     July 1998.  http://www.ietf.org/rfc/rfc2376.txt
        
   XML-ns            Namespaces in XML Recommendation. T. Bray, D.
                     Hollander, A. Layman. Janury 1999.
                     http://www.w3.org/TR/1999/REC-xml-names-19990114
        
   XML-ns            Namespaces in XML Recommendation. T. Bray, D.
                     Hollander, A. Layman. Janury 1999.
                     http://www.w3.org/TR/1999/REC-xml-names-19990114
        
   XML-schema        XML Schema Part 1: Structures Working Draft. D.
                     Beech, M. Maloney, N. Mendelshohn. September 2000.
                     http://www.w3.org/TR/2000/WD-xmlschema-1-20000922/
        
   XML-schema        XML Schema Part 1: Structures Working Draft. D.
                     Beech, M. Maloney, N. Mendelshohn. September 2000.
                     http://www.w3.org/TR/2000/WD-xmlschema-1-20000922/
        
                     XML Schema Part 2: Datatypes Working Draft. P.
                     Biron, A. Malhotra. September 2000.
                     http://www.w3.org/TR/2000/WD-xmlschema-2-20000922/
        
                     XML Schema Part 2: Datatypes Working Draft. P.
                     Biron, A. Malhotra. September 2000.
                     http://www.w3.org/TR/2000/WD-xmlschema-2-20000922/
        
   XML-Signature-RD  Reagle, J., "XML Signature Requirements", RFC 2907,
                     April 2000.  http://www.w3.org/TR/1999/WD-xmldsig-
                     requirements-19991014
                     http://www.ietf.org/rfc/rfc2807.txt
        
   XML-Signature-RD  Reagle, J., "XML Signature Requirements", RFC 2907,
                     April 2000.  http://www.w3.org/TR/1999/WD-xmldsig-
                     requirements-19991014
                     http://www.ietf.org/rfc/rfc2807.txt
        
   XPath             XML Path Language (XPath)Version 1.0.
                     Recommendation. J. Clark, S. DeRose. October 1999.
                     http://www.w3.org/TR/1999/REC-xpath-19991116
        
   XPath             XML Path Language (XPath)Version 1.0.
                     Recommendation. J. Clark, S. DeRose. October 1999.
                     http://www.w3.org/TR/1999/REC-xpath-19991116
        
   XPointer          XML Pointer Language (XPointer). Candidate
                     Recommendation. S. DeRose, R. Daniel, E. Maler.
                     http://www.w3.org/TR/2000/CR-xptr-20000607
        
   XPointer          XML Pointer Language (XPointer). Candidate
                     Recommendation. S. DeRose, R. Daniel, E. Maler.
                     http://www.w3.org/TR/2000/CR-xptr-20000607
        

XSL Extensible Stylesheet Language (XSL) Working Draft. S. Adler, A. Berglund, J. Caruso, S. Deach, P. Grosso, E. Gutentag, A. Milowski, S. Parnell, J. Richman, S. Zilles. March 2000. http://www.w3.org/TR/2000/WD-xsl-20000327/xslspec.html

XSL可扩展样式表语言(XSL)工作草案。阿德勒、伯格伦、卡鲁索、迪奇、格罗索、古腾塔格、米洛夫斯基、帕内尔、里奇曼、齐尔斯。2000年3月。http://www.w3.org/TR/2000/WD-xsl-20000327/xslspec.html

   XSLT              XSL Transforms (XSLT) Version 1.0. Recommendation.
                     J. Clark. November 1999.
                     http://www.w3.org/TR/1999/REC-xslt-19991116.html
        
   XSLT              XSL Transforms (XSLT) Version 1.0. Recommendation.
                     J. Clark. November 1999.
                     http://www.w3.org/TR/1999/REC-xslt-19991116.html
        
12. Authors' Addresses
12. 作者地址

Donald E. Eastlake 3rd Motorola, Mail Stop: M2-450 20 Forbes Boulevard Mansfield, MA 02048 USA

Donald E.Eastlake第三摩托罗拉邮递站:美国马萨诸塞州曼斯菲尔德福布斯大道20号M2-450 02048

Phone: 1-508-261-5434 EMail: Donald.Eastlake@motorola.com

电话:1-508-261-5434电子邮件:Donald。Eastlake@motorola.com

Joseph M. Reagle Jr., W3C Massachusetts Institute of Technology Laboratory for Computer Science NE43-350, 545 Technology Square Cambridge, MA 02139

Joseph M.Reagle Jr.,W3C麻省理工学院计算机科学实验室NE43-350,马萨诸塞州剑桥技术广场545号,邮编02139

Phone: 1.617.258.7621 EMail: reagle@w3.org

电话:1.617.258.7621电子邮件:reagle@w3.org

David Solo Citigroup 909 Third Ave, 16th Floor NY, NY 10043 USA

美国纽约州纽约市第三大道909号16楼花旗集团David Solo 10043

   Phone: +1-212-559-2900
   EMail: dsolo@alum.mit.edu
        
   Phone: +1-212-559-2900
   EMail: dsolo@alum.mit.edu
        
13. Full Copyright Statement
13. 完整版权声明

Copyright (C) The Internet Society (2001). All Rights Reserved.

版权所有(C)互联网协会(2001年)。版权所有。

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English.

本文件及其译本可复制并提供给他人,对其进行评论或解释或协助其实施的衍生作品可全部或部分编制、复制、出版和分发,不受任何限制,前提是上述版权声明和本段包含在所有此类副本和衍生作品中。但是,不得以任何方式修改本文件本身,例如删除版权通知或对互联网协会或其他互联网组织的引用,除非出于制定互联网标准的需要,在这种情况下,必须遵循互联网标准过程中定义的版权程序,或根据需要将其翻译成英语以外的其他语言。

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns.

上述授予的有限许可是永久性的,互联网协会或其继承人或受让人不会撤销。

This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

本文件和其中包含的信息是按“原样”提供的,互联网协会和互联网工程任务组否认所有明示或暗示的保证,包括但不限于任何保证,即使用本文中的信息不会侵犯任何权利,或对适销性或特定用途适用性的任何默示保证。

Acknowledgement

确认

Funding for the RFC Editor function is currently provided by the Internet Society.

RFC编辑功能的资金目前由互联网协会提供。