Network Working Group                                    D. Eastlake 3rd
Request for Comments: 4051                         Motorola Laboratories
Category: Standards Track                                     April 2005
        
Network Working Group                                    D. Eastlake 3rd
Request for Comments: 4051                         Motorola Laboratories
Category: Standards Track                                     April 2005
        

Additional XML Security Uniform Resource Identifiers (URIs)

其他XML安全统一资源标识符(URI)

Status of This Memo

关于下段备忘

This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.

本文件规定了互联网社区的互联网标准跟踪协议,并要求进行讨论和提出改进建议。有关本协议的标准化状态和状态,请参考当前版本的“互联网官方协议标准”(STD 1)。本备忘录的分发不受限制。

Copyright Notice

版权公告

Copyright (C) The Internet Society (2005).

版权所有(C)互联网协会(2005年)。

Abstract

摘要

A number of Uniform Resource Identifiers (URIs) intended for use with XML Digital Signatures, Encryption, and Canonicalization are defined. These URIs identify algorithms and types of keying information.

定义了许多用于XML数字签名、加密和规范化的统一资源标识符(URI)。这些URI识别键控信息的算法和类型。

Table of Contents

目录

   1.  Introduction..................................................  2
   2.  Algorithms....................................................  3
       2.1.  DigestMethod Algorithms.................................  3
             2.1.1.  MD5.............................................  3
             2.1.2.  SHA-224.........................................  3
             2.1.3.  SHA-384.........................................  4
       2.2.  SignatureMethod Message Authentication Code Algorithms..  4
             2.2.1.  HMAC-MD5........................................  4
             2.2.2.  HMAC SHA Variations.............................  5
             2.2.3.  HMAC-RIPEMD160..................................  6
       2.3.  SignatureMethod Public Key Signature Algorithms.........  6
             2.3.1.  RSA-MD5.........................................  6
             2.3.2.  RSA-SHA256......................................  7
             2.3.3.  RSA-SHA384......................................  7
             2.3.4.  RSA-SHA512......................................  7
             2.3.5.  RSA-RIPEMD160...................................  8
             2.3.6.  ECDSA-SHA*......................................  8
             2.3.7.  ESIGN-SHA1......................................  8
       2.4.  Minimal Canonicalization................................  9
       2.5.  Transform Algorithms....................................  9
             2.5.1.  XPointer........................................  9
        
   1.  Introduction..................................................  2
   2.  Algorithms....................................................  3
       2.1.  DigestMethod Algorithms.................................  3
             2.1.1.  MD5.............................................  3
             2.1.2.  SHA-224.........................................  3
             2.1.3.  SHA-384.........................................  4
       2.2.  SignatureMethod Message Authentication Code Algorithms..  4
             2.2.1.  HMAC-MD5........................................  4
             2.2.2.  HMAC SHA Variations.............................  5
             2.2.3.  HMAC-RIPEMD160..................................  6
       2.3.  SignatureMethod Public Key Signature Algorithms.........  6
             2.3.1.  RSA-MD5.........................................  6
             2.3.2.  RSA-SHA256......................................  7
             2.3.3.  RSA-SHA384......................................  7
             2.3.4.  RSA-SHA512......................................  7
             2.3.5.  RSA-RIPEMD160...................................  8
             2.3.6.  ECDSA-SHA*......................................  8
             2.3.7.  ESIGN-SHA1......................................  8
       2.4.  Minimal Canonicalization................................  9
       2.5.  Transform Algorithms....................................  9
             2.5.1.  XPointer........................................  9
        
       2.6.  EncryptionMethod Algorithms............................. 10
             2.6.1.  ARCFOUR Encryption Algorithm.................... 10
             2.6.2.  Camellia Block Encryption....................... 10
             2.6.3.  Camellia Key Wrap............................... 11
             2.6.4.  PSEC-KEM........................................ 11
   3.  KeyInfo....................................................... 12
       3.1.  PKCS #7 Bag of Certificates and CRLs.................... 12
       3.2.  Additional RetrievalMethod Type Values.................. 12
   4.  IANA Considerations........................................... 13
   5.  Security Considerations....................................... 13
   Acknowledgements.................................................. 13
   Normative References.............................................. 13
   Informative References............................................ 15
   Author's Address.................................................. 16
   Full Copyright Statement.......................................... 17
        
       2.6.  EncryptionMethod Algorithms............................. 10
             2.6.1.  ARCFOUR Encryption Algorithm.................... 10
             2.6.2.  Camellia Block Encryption....................... 10
             2.6.3.  Camellia Key Wrap............................... 11
             2.6.4.  PSEC-KEM........................................ 11
   3.  KeyInfo....................................................... 12
       3.1.  PKCS #7 Bag of Certificates and CRLs.................... 12
       3.2.  Additional RetrievalMethod Type Values.................. 12
   4.  IANA Considerations........................................... 13
   5.  Security Considerations....................................... 13
   Acknowledgements.................................................. 13
   Normative References.............................................. 13
   Informative References............................................ 15
   Author's Address.................................................. 16
   Full Copyright Statement.......................................... 17
        
1. Introduction
1. 介绍

XML Digital Signatures, Canonicalization, and Encryption have been standardized by the W3C and the joint IETF/W3C XMLDSIG working group. All of these are now W3C Recommendations and IETF Informational or Standards Track documents. They are available as follows:

XML数字签名、规范化和加密已由W3C和IETF/W3C XMLDSIG联合工作组标准化。所有这些现在都是W3C建议和IETF信息或标准跟踪文档。可供索取的资料如下:

   IETF level           W3C REC     Topic
   -----------          -------     -----
   [RFC3275]  Draft Std [XMLDSIG]   XML Digital Signatures
   [RFC3076]  Info      [CANON]     Canonical XML
    - - - - - -         [XMLENC]    XML Encryption
   [RFC3741]  Info      [EXCANON]   Exclusive XML Canonicalization
        
   IETF level           W3C REC     Topic
   -----------          -------     -----
   [RFC3275]  Draft Std [XMLDSIG]   XML Digital Signatures
   [RFC3076]  Info      [CANON]     Canonical XML
    - - - - - -         [XMLENC]    XML Encryption
   [RFC3741]  Info      [EXCANON]   Exclusive XML Canonicalization
        

All of these standards and recommendations use URIs [RFC2396] to identify algorithms and keying information types. This document provides a convenient reference list of URIs and descriptions for algorithms in which there is substantial interest, but which cannot or have not been included in the main documents. Note that raising XML digital signature to a Draft Standard in the IETF required removal of any algorithms for which interoperability from the main standards document has not been demonstrated. This required removal of the Minimal Canonicalization algorithm, in which there appears to be a continued interest, to be dropped from the standards track specification. It is included here.

所有这些标准和建议都使用URI[RFC2396]来识别算法和键控信息类型。本文档提供了一个方便的URI参考列表,以及对算法的描述,这些算法有很大的兴趣,但不能或没有包含在主要文档中。请注意,将XML数字签名提升为IETF中的标准草案需要删除主标准文档中尚未演示互操作性的任何算法。这需要从标准轨道规范中删除最小规范化算法(其中似乎有持续的兴趣)。包括在这里。

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

本文件中的关键词“必须”、“不得”、“必需”、“应”、“不应”、“应”、“不应”、“建议”、“可”和“可选”应按照[RFC2119]中所述进行解释。

2. Algorithms
2. 算法

The URI [RFC2396] being dropped from the standard because of the transition from Proposed Standard to Draft Standard is included in Section 2.4 with its original prefix so as to avoid changing the XMLDSIG standard's namespace.

第2.4节中包含了由于从拟定标准过渡到标准草案而从标准中删除的URI[RFC2396]及其原始前缀,以避免更改XMLDSIG标准的命名空间。

      http://www.w3.org/2000/09/xmldsig#
        
      http://www.w3.org/2000/09/xmldsig#
        

Additional algorithms are given URIs that start with:

其他算法提供了以以下内容开头的URI:

      http://www.w3.org/2001/04/xmldsig-more#
        
      http://www.w3.org/2001/04/xmldsig-more#
        

An "xmldsig-more" URI does not imply any official W3C status for these algorithms or identifiers or that they are only useful in digital signatures. Currently, dereferencing such URIs may or may not produce a temporary placeholder document. Permission to use this URI prefix has been given by the W3C.

“xmldsig more”URI并不意味着这些算法或标识符的任何官方W3C状态,也不意味着它们仅在数字签名中有用。目前,取消引用此类URI可能会也可能不会生成临时占位符文档。W3C已授予使用此URI前缀的权限。

2.1. DigestMethod Algorithms
2.1. 消化法算法

These algorithms are usable wherever a DigestMethod element occurs.

无论DigestMethod元素出现在哪里,这些算法都是可用的。

2.1.1. MD5
2.1.1. MD5

Identifier:

标识符:

      http://www.w3.org/2001/04/xmldsig-more#md5
        
      http://www.w3.org/2001/04/xmldsig-more#md5
        

The MD5 algorithm [RFC1321] takes no explicit parameters. An example of an MD5 DigestAlgorithm element is:

MD5算法[RFC1321]不接受显式参数。MD5 DigestAlgorithm元素的一个示例是:

   <DigestAlgorithm
      Algorithm="http://www.w3.org/2001/04/xmldsig-more#md5"/>
        
   <DigestAlgorithm
      Algorithm="http://www.w3.org/2001/04/xmldsig-more#md5"/>
        

An MD5 digest is a 128-bit string. The content of the DigestValue element shall be the base64 [RFC2405] encoding of this bit string viewed as a 16-octet octet stream.

MD5摘要是128位字符串。DigestValue元素的内容应为该位字符串的base64[RFC2405]编码,该位字符串被视为16个八位字节流。

2.1.2. SHA-224
2.1.2. SHA-224
   Identifier:
      http://www.w3.org/2001/04/xmldsig-more#sha224
        
   Identifier:
      http://www.w3.org/2001/04/xmldsig-more#sha224
        

The SHA-224 algorithm [FIPS-180-2change, RFC3874] takes no explicit parameters. An example of a SHA-224 DigestAlgorithm element is:

SHA-224算法[FIPS-180-2change,RFC3874]没有明确的参数。SHA-224算法元素的一个示例是:

   <DigestAlgorithm
      Algorithm="http://www.w3.org/2001/04/xmldsig-more#sha224" />
        
   <DigestAlgorithm
      Algorithm="http://www.w3.org/2001/04/xmldsig-more#sha224" />
        

A SHA-224 digest is a 224 bit string. The content of the DigestValue element shall be the base64 [RFC2405] encoding of this string viewed as a 28-octet stream. Because it takes roughly the same amount of effort to compute a SHA-224 message digest as a SHA-256 digest, and terseness is usually not a criteria in an XML application, consideration should be given to the use of SHA-256 as an alternative.

SHA-224摘要是一个224位的字符串。DigestValue元素的内容应为该字符串的base64[RFC2405]编码,被视为28个八位字节的流。由于计算SHA-224消息摘要所需的工作量与计算SHA-256消息摘要所需的工作量大致相同,并且简洁性通常不是XML应用程序中的标准,因此应考虑使用SHA-256作为替代方案。

2.1.3. SHA-384
2.1.3. SHA-384
   Identifier:
      http://www.w3.org/2001/04/xmldsig-more#sha384
        
   Identifier:
      http://www.w3.org/2001/04/xmldsig-more#sha384
        

The SHA-384 algorithm [FIPS-180-2] takes no explicit parameters. An example of a SHA-384 DigestAlgorithm element is:

SHA-384算法[FIPS-180-2]没有明确的参数。SHA-384算法元素的一个示例是:

   <DigestAlgorithm
      Algorithm="http://www.w3.org/2001/04/xmldsig-more#sha384" />
        
   <DigestAlgorithm
      Algorithm="http://www.w3.org/2001/04/xmldsig-more#sha384" />
        

A SHA-384 digest is a 384 bit string. The content of the DigestValue element shall be the base64 [RFC2405] encoding of this string viewed as a 48-octet stream. Because it takes roughly the same amount of effort to compute a SHA-384 message digest as a SHA-512 digest and terseness is usually not a criteria in XML application, consideration should be given to the use of SHA-512 as an alternative.

SHA-384摘要是384位字符串。DigestValue元素的内容应为该字符串的base64[RFC2405]编码,视为48个八位字节流。由于计算SHA-384消息摘要所需的工作量与计算SHA-512消息摘要所需的工作量大致相同,并且简洁性通常不是XML应用程序中的标准,因此应考虑使用SHA-512作为替代方案。

2.2. SignatureMethod Message Authentication Code Algorithms
2.2. SignatureMethod消息认证码算法

Note: Some text in this section is duplicated from [RFC3275] for the convenience of the reader. RFC 3275 is normative in case of conflict.

注:为方便读者阅读,本节中的一些文本从[RFC3275]中复制。RFC 3275是冲突情况下的规范。

2.2.1. HMAC-MD5
2.2.1. HMAC-MD5
   Identifier:
      http://www.w3.org/2001/04/xmldsig-more#hmac-md5
        
   Identifier:
      http://www.w3.org/2001/04/xmldsig-more#hmac-md5
        

The HMAC algorithm [RFC2104] takes the truncation length in bits as a parameter; if the parameter is not specified then all the bits of the hash are output. An example of an HMAC-MD5 SignatureMethod element is as follows:

HMAC算法[RFC2104]以位为单位的截断长度作为参数;如果未指定参数,则输出散列的所有位。HMAC-MD5 SignatureMethod元素的示例如下:

   <SignatureMethod
      Algorithm="http://www.w3.org/2001/04/xmldsig-more#hmac-md5">
      <HMACOutputLength>112</HMACOutputLength>
   </SignatureMethod>
        
   <SignatureMethod
      Algorithm="http://www.w3.org/2001/04/xmldsig-more#hmac-md5">
      <HMACOutputLength>112</HMACOutputLength>
   </SignatureMethod>
        

The output of the HMAC algorithm is ultimately the output (possibly truncated) of the chosen digest algorithm. This value shall be base64 [RFC2405] encoded in the same straightforward fashion as the output of the digest algorithms. For example, the SignatureValue element for the HMAC-MD5 digest

HMAC算法的输出最终是所选摘要算法的输出(可能被截断)。该值应以与摘要算法输出相同的简单方式进行base64[RFC2405]编码。例如,HMAC-MD5摘要的SignatureValue元素

9294727A 3638BB1C 13F48EF8 158BFC9D

9294727A 3638BB1C 13F48EF8 158BFC9D

from the test vectors in [RFC2104] would be

根据[RFC2104]中的测试向量

kpRyejY4uxwT9I74FYv8nQ==

kpRyejY4uxwT9I74FYv8nQ==

Schema Definition:

架构定义:

      <simpleType name="HMACOutputLength">
         <restriction base="integer" />
      </simpleType>
        
      <simpleType name="HMACOutputLength">
         <restriction base="integer" />
      </simpleType>
        

DTD:

DTD:

      <!ELEMENT HMACOutputLength (#PCDATA) >
        
      <!ELEMENT HMACOutputLength (#PCDATA) >
        

The Schema Definition and DTD immediately shown above are taken from [RFC3275].

上面显示的模式定义和DTD取自[RFC3275]。

Although some cryptographic suspicions have recently been cast on MD5 for use in signatures such as RSA-MD5 below, this does not effect use of MD5 in HMAC.

尽管最近有人怀疑MD5在签名(如下面的RSA-MD5)中使用,但这并不影响MD5在HMAC中的使用。

2.2.2. HMAC SHA Variations
2.2.2. HMAC SHA变体
   Identifiers:
      http://www.w3.org/2001/04/xmldsig-more#hmac-sha224
      http://www.w3.org/2001/04/xmldsig-more#hmac-sha256
      http://www.w3.org/2001/04/xmldsig-more#hmac-sha384
      http://www.w3.org/2001/04/xmldsig-more#hmac-sha512
        
   Identifiers:
      http://www.w3.org/2001/04/xmldsig-more#hmac-sha224
      http://www.w3.org/2001/04/xmldsig-more#hmac-sha256
      http://www.w3.org/2001/04/xmldsig-more#hmac-sha384
      http://www.w3.org/2001/04/xmldsig-more#hmac-sha512
        

SHA-224, SHA-256, SHA-384, and SHA-512 [FIPS-180-2, FIPS-180-2change, RFC3874] can also be used in HMAC as described in section 2.2.1 for HMAC-MD5.

SHA-224、SHA-256、SHA-384和SHA-512[FIPS-180-2、FIPS-180-2变更、RFC3874]也可用于HMAC,如第2.2.1节HMAC-MD5所述。

2.2.3. HMAC-RIPEMD160
2.2.3. HMAC-RIPEMD160
   Identifier:
      http://www.w3.org/2001/04/xmldsig-more#hmac-ripemd160
        
   Identifier:
      http://www.w3.org/2001/04/xmldsig-more#hmac-ripemd160
        

RIPEMD-160 [RIPEMD-160] can also be used in HMAC as described in section 2.2.1 for HMAC-MD5.

RIPEMD-160[RIPEMD-160]也可用于HMAC,如第2.2.1节HMAC-MD5所述。

2.3. SignatureMethod Public Key Signature Algorithms
2.3. 签名方法公钥签名算法

These algorithms are distinguished from those in Section 2.2 in that they use public key methods. The verification key is different from and not feasibly derivable from the signing key.

这些算法与第2.2节中的算法不同,因为它们使用公钥方法。验证密钥不同于签名密钥,并且不可能从签名密钥派生。

2.3.1. RSA-MD5
2.3.1. RSA-MD5
   Identifier:
      http://www.w3.org/2001/04/xmldsig-more#rsa-md5
        
   Identifier:
      http://www.w3.org/2001/04/xmldsig-more#rsa-md5
        

RSA-MD5 implies the PKCS#1 v1.5 padding algorithm described in [RFC3447]. An example of use is

RSA-MD5意味着[RFC3447]中描述的PKCS#1 v1.5填充算法。使用的一个例子是

   <SignatureMethod
      Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-md5" />
        
   <SignatureMethod
      Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-md5" />
        

The SignatureValue content for an RSA-MD5 signature is the base64 [RFC2405] encoding of the octet string computed as per [RFC3447], section 8.1.1, signature generation for the RSASSA-PKCS1-v1_5 signature scheme. As specified in the EMSA-PKCS1-V1_5-ENCODE function in [RFC3447, section 9.2.1], the value input to the signature function MUST contain a pre-pended algorithm object identifier for the hash function, but the availability of an ASN.1 parser and recognition of OIDs are not required of a signature verifier. The PKCS#1 v1.5 representation appears as:

RSA-MD5签名的SignatureValue内容是根据[RFC3447]第8.1.1节“RSASSA-PKCS1-v1_5签名方案的签名生成”计算的八位字节字符串的base64[RFC2405]编码。如[RFC3447,第9.2.1节]中EMSA-PKCS1-V1_5-ENCODE函数所述,输入到签名函数的值必须包含哈希函数的预挂算法对象标识符,但签名验证器不需要ASN.1解析器的可用性和OID的识别。PKCS#1 v1.5表示形式如下所示:

CRYPT (PAD (ASN.1 (OID, DIGEST (data))))

密码(PAD(ASN.1(OID,摘要(数据)))

Note that the padded ASN.1 will be of the following form:

请注意,填充ASN.1将采用以下形式:

01 | FF* | 00 | prefix | hash

01 | FF*| 00 |前缀|散列

Vertical bar ("|") represents concatenation. "01", "FF", and "00" are fixed octets of the corresponding hexadecimal value and the asterisk ("*") after "FF" indicates repetition. "hash" is the MD5 digest of the data. "prefix" is the ASN.1 BER MD5 algorithm designator prefix required in PKCS #1 [RFC3447], that is:

垂直条(“|”)表示连接。“01”、“FF”和“00”是对应十六进制值的固定八位字节,“FF”后的星号(“*”)表示重复。“hash”是数据的MD5摘要。“前缀”是PKCS#1[RFC3447]中要求的ASN.1 BER MD5算法指示符前缀,即:

hex 30 20 30 0c 06 08 2a 86 48 86 f7 0d 02 05 05 00 04 10

六角30 20 30 0c 06 08 2a 86 48 86 f7 0d 02 05 00 04 10

This prefix is included to facilitate the use of standard cryptographic libraries. The FF octet MUST be repeated enough times that the value of the quantity being CRYPTed is exactly one octet shorter than the RSA modulus.

包含此前缀是为了方便使用标准加密库。FF八位组必须重复足够的次数,以使加密的数量值正好比RSA模短一个八位组。

Due to increases in computer processor power and advances in cryptography, use of RSA-MD5 is NOT RECOMMENDED.

由于计算机处理器能力的提高和密码学的进步,不建议使用RSA-MD5。

2.3.2. RSA-SHA256
2.3.2. RSA-SHA256
   Identifier:
      http://www.w3.org/2001/04/xmldsig-more#rsa-sha256
        
   Identifier:
      http://www.w3.org/2001/04/xmldsig-more#rsa-sha256
        

This implies the PKCS#1 v1.5 padding algorithm [RFC3447] as described in section 2.3.1, but with the ASN.1 BER SHA-256 algorithm designator prefix. An example of use is:

这意味着PKCS#1 v1.5填充算法[RFC3447]如第2.3.1节所述,但带有ASN.1 BER SHA-256算法标识符前缀。一个使用示例是:

   <SignatureMethod
      Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha256" />
        
   <SignatureMethod
      Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha256" />
        
2.3.3 RSA-SHA384
2.3.3 RSA-SHA384
   Identifier:
      http://www.w3.org/2001/04/xmldsig-more#rsa-sha384
        
   Identifier:
      http://www.w3.org/2001/04/xmldsig-more#rsa-sha384
        

This implies the PKCS#1 v1.5 padding algorithm [RFC3447] as described in section 2.3.1, but with the ASN.1 BER SHA-384 algorithm designator prefix. An example of use is:

这意味着PKCS#1 v1.5填充算法[RFC3447]如第2.3.1节所述,但带有ASN.1 BER SHA-384算法标识符前缀。一个使用示例是:

   <SignatureMethod
      Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha384" />
        
   <SignatureMethod
      Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha384" />
        

Because it takes about the same effort to calculate a SHA-384 message digest as a SHA-512 message digest, it is suggested that RSA-SHA512 be used in preference to RSA-SHA384 where possible.

由于计算SHA-384消息摘要与计算SHA-512消息摘要所需的工作量大致相同,因此建议尽可能优先使用RSA-SHA512而不是RSA-SHA384。

2.3.4. RSA-SHA512
2.3.4. RSA-SHA512
   Identifier:
      http://www.w3.org/2001/04/xmldsig-more#rsa-sha512
        
   Identifier:
      http://www.w3.org/2001/04/xmldsig-more#rsa-sha512
        

This implies the PKCS#1 v1.5 padding algorithm [RFC3447] as described in section 2.3.1, but with the ASN.1 BER SHA-512 algorithm designator prefix. An example of use is:

这意味着PKCS#1 v1.5填充算法[RFC3447]如第2.3.1节所述,但带有ASN.1 BER SHA-512算法标识符前缀。一个使用示例是:

   <SignatureMethod
      Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha512" />
        
   <SignatureMethod
      Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha512" />
        
2.3.5. RSA-RIPEMD160
2.3.5. RSA-RIPEMD160
   Identifier:
     http://www.w3.org/2001/04/xmldsig-more/rsa-ripemd160
        
   Identifier:
     http://www.w3.org/2001/04/xmldsig-more/rsa-ripemd160
        

This implies the PKCS#1 v1.5 padding algorithm [RFC3447], as described in section 2.3.1, but with the ASN.1 BER RIPEMD160 algorithm designator prefix. An example of use is:

这意味着PKCS#1 v1.5填充算法[RFC3447],如第2.3.1节所述,但带有ASN.1 BER RIPEMD160算法标识符前缀。一个使用示例是:

   <SignatureMethod
     Algorithm="http://www.w3.org/2001/04/xmldsig-more/rsa-ripemd160" />
        
   <SignatureMethod
     Algorithm="http://www.w3.org/2001/04/xmldsig-more/rsa-ripemd160" />
        
2.3.6. ECDSA-SHA*
2.3.6. ECDSA-SHA*
   Identifiers
      http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha1
      http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha224
      http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha256
      http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha384
      http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha512
        
   Identifiers
      http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha1
      http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha224
      http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha256
      http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha384
      http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha512
        

The Elliptic Curve Digital Signature Algorithm (ECDSA) [FIPS-186-2] is the elliptic curve analogue of the DSA (DSS) signature method. For detailed specifications on how to use it with SHA hash functions and XML Digital Signature, please see [X9.62] and [ECDSA].

椭圆曲线数字签名算法(ECDSA)[FIPS-186-2]是DSA(DSS)签名方法的椭圆曲线模拟。有关如何将其与SHA哈希函数和XML数字签名一起使用的详细规范,请参阅[X9.62]和[ECDSA]。

2.3.7. ESIGN-SHA1
2.3.7. ESIGN-SHA1
   Identifier
      http://www.w3.org/2001/04/xmldsig-more#esign-sha1
      http://www.w3.org/2001/04/xmldsig-more#esign-sha224
      http://www.w3.org/2001/04/xmldsig-more#esign-sha256
      http://www.w3.org/2001/04/xmldsig-more#esign-sha384
      http://www.w3.org/2001/04/xmldsig-more#esign-sha512
        
   Identifier
      http://www.w3.org/2001/04/xmldsig-more#esign-sha1
      http://www.w3.org/2001/04/xmldsig-more#esign-sha224
      http://www.w3.org/2001/04/xmldsig-more#esign-sha256
      http://www.w3.org/2001/04/xmldsig-more#esign-sha384
      http://www.w3.org/2001/04/xmldsig-more#esign-sha512
        

The ESIGN algorithm specified in [IEEE-P1363a] is a signature scheme based on the integer factorization problem. It is much faster than previous digital signature schemes so ESIGN can be implemented on smart cards without special co-processors.

[IEEE-P1363a]中规定的ESIGN算法是基于整数分解问题的签名方案。它比以前的数字签名方案快得多,因此无需特殊的协处理器即可在智能卡上实现ESIGN。

An example of use is:

一个使用示例是:

   <SignatureMethod
      Algorithm="http://www.w3.org/2001/04/xmldsig-more#esign-sha1" />
        
   <SignatureMethod
      Algorithm="http://www.w3.org/2001/04/xmldsig-more#esign-sha1" />
        
2.4. Minimal Canonicalization
2.4. 最小规范化

Thus far two independent interoperable implementations of Minimal Canonicalization have not been announced. Therefore, when XML Digital Signature was advanced from Proposed Standard [RFC3075] to Draft Standard [RFC3275], Minimal Canonicalization was dropped from the standards track documents. However, there is still interest in Minimal Canonicalization, indicating its possible future use. For its definition, see [RFC3075], Section 6.5.1.

到目前为止,还没有宣布两个独立的可互操作的最小规范化实现。因此,当XML数字签名从提议的标准[RFC3075]提升到草案标准[RFC3275]时,标准跟踪文档中的最小规范化被删除。然而,人们仍然对最小规范化感兴趣,这表明了它在未来的可能用途。其定义见[RFC3075],第6.5.1节。

   For reference, its identifier remains:
      http://www.w3.org/2000/09/xmldsig#minimal
        
   For reference, its identifier remains:
      http://www.w3.org/2000/09/xmldsig#minimal
        
2.5. Transform Algorithms
2.5. 变换算法

Note that all CanonicalizationMethod algorithms can also be used as transform algorithms.

请注意,所有规范化方法算法也可以用作变换算法。

2.5.1. XPointer
2.5.1. XPointer
   Identifier:
      http://www.w3.org/2001/04/xmldsig-more/xptr
        
   Identifier:
      http://www.w3.org/2001/04/xmldsig-more/xptr
        

This transform algorithm takes an [XPointer] as an explicit parameter. An example of use is [RFC3092]:

此转换算法将[XPointer]作为显式参数。使用示例为[RFC3092]:

   <Transform
      Algorithm="http://www.w3.org/2001/04/xmldsig-more/xptr">
      <XPointer
         xmlns="http://www.w3.org/2001/04/xmldsig-more/xptr">
            xpointer(id("foo")) xmlns(bar=http://foobar.example)
            xpointer(//bar:Zab[@Id="foo"])
      </XPointer>
   </Transform>
        
   <Transform
      Algorithm="http://www.w3.org/2001/04/xmldsig-more/xptr">
      <XPointer
         xmlns="http://www.w3.org/2001/04/xmldsig-more/xptr">
            xpointer(id("foo")) xmlns(bar=http://foobar.example)
            xpointer(//bar:Zab[@Id="foo"])
      </XPointer>
   </Transform>
        

Schema Definition:

架构定义:

      <element name="XPointer" type="string">
        
      <element name="XPointer" type="string">
        

DTD:

DTD:

      <!ELEMENT XPointer (#PCDATA) >
        
      <!ELEMENT XPointer (#PCDATA) >
        

Input to this transform is an octet stream (which is then parsed into XML).

此转换的输入是一个八位字节流(然后将其解析为XML)。

Output from this transform is a node set; the results of the XPointer are processed as defined in the XMLDSIG specification [RFC3275] for a same document XPointer.

此转换的输出是一个节点集;XPointer的结果按照XMLDSIG规范[RFC3275]中对同一文档XPointer的定义进行处理。

2.6. EncryptionMethod Algorithms
2.6. 加密算法

This subsection gives identifiers and information for several EncryptionMethod Algorithms.

本小节给出了几种EncryptionMethod算法的标识符和信息。

2.6.1. ARCFOUR Encryption Algorithm
2.6.1. ARCFOUR加密算法
   Identifier:
      http://www.w3.org/2001/04/xmldsig-more#arcfour
        
   Identifier:
      http://www.w3.org/2001/04/xmldsig-more#arcfour
        

ARCFOUR is a fast, simple stream encryption algorithm that is compatible with RSA Security's RC4 algorithm. An example of the EncryptionMethod element using ARCFOUR is

ARCFOUR是一种快速、简单的流加密算法,与RSA Security的RC4算法兼容。使用ARCFOUR的EncryptionMethod元素的示例如下

   <EncryptionMethod
      Algorithm="http://www.w3.org/2001/04/xmldsig-more#arcfour">
      <KeySize>40</KeySize>
   </EncryptionMethod>
        
   <EncryptionMethod
      Algorithm="http://www.w3.org/2001/04/xmldsig-more#arcfour">
      <KeySize>40</KeySize>
   </EncryptionMethod>
        

Note that Arcfour makes use of the generic KeySize parameter specified and defined in [XMLENC].

请注意,Arcfour使用了[XMLENC]中指定和定义的通用KeySize参数。

2.6.2. Camellia Block Encryption
2.6.2. Camellia块加密
   Identifiers:
      http://www.w3.org/2001/04/xmldsig-more#camellia128-cbc
      http://www.w3.org/2001/04/xmldsig-more#camellia192-cbc
      http://www.w3.org/2001/04/xmldsig-more#camellia256-cbc
        
   Identifiers:
      http://www.w3.org/2001/04/xmldsig-more#camellia128-cbc
      http://www.w3.org/2001/04/xmldsig-more#camellia192-cbc
      http://www.w3.org/2001/04/xmldsig-more#camellia256-cbc
        

Camellia is an efficient and secure block cipher with the same interface as the AES [Camellia, RFC3713], that is 128-bit block size and 128, 192, and 256 bit key sizes. In XML Encryption, Camellia is used in the same way as the AES: It is used in the Cipher Block Chaining (CBC) mode with a 128-bit initialization vector (IV). The resulting cipher text is prefixed by the IV. If included in XML output, it is then base64 encoded. An example Camellia EncryptionMethod is as follows:

Camellia是一种高效安全的分组密码,与AES[Camellia,RFC3713]具有相同的接口,即128位的块大小和128、192和256位的密钥大小。在XML加密中,Camellia的使用方式与AES相同:它在具有128位初始化向量(IV)的密码块链接(CBC)模式中使用。生成的密码文本以IV作为前缀。如果包含在XML输出中,则对其进行base64编码。Camellia EncryptionMethod示例如下:

   <EncryptionMethod
      Algorithm=
      "http://www.w3.org/2001/04/xmldsig-more#camellia128-cbc" />
        
   <EncryptionMethod
      Algorithm=
      "http://www.w3.org/2001/04/xmldsig-more#camellia128-cbc" />
        
2.6.3. Camellia Key Wrap
2.6.3. 茶花钥匙套
   Identifiers:
      http://www.w3.org/2001/04/xmldsig-more#kw-camellia128
      http://www.w3.org/2001/04/xmldsig-more#kw-camellia192
      http://www.w3.org/2001/04/xmldsig-more#kw-camellia256
        
   Identifiers:
      http://www.w3.org/2001/04/xmldsig-more#kw-camellia128
      http://www.w3.org/2001/04/xmldsig-more#kw-camellia192
      http://www.w3.org/2001/04/xmldsig-more#kw-camellia256
        

The Camellia [Camellia, RFC3713] key wrap is identical to the AES key wrap algorithm [RFC3394] specified in the XML Encryption standard with "AES" replaced by "Camellia". As with AES key wrap, the check value is 0xA6A6A6A6A6A6A6A6.

Camellia[Camellia,RFC3713]密钥封装与XML加密标准中指定的AES密钥封装算法[RFC3394]相同,其中“AES”替换为“Camellia”。与AES密钥包裹一样,检查值为0xA6。

The algorithm is the same regardless of the size of the Camellia key used in wrapping (called the key encrypting key or KEK). The implementation of Camellia is OPTIONAL. However, if it is supported, the same implementation guidelines of which combinations of KEK size and wrapped key size should be required to be supported and which are optional to be supported should be followed as for AES. That is to say, if Camellia key wrap is supported, then wrapping 128-bit keys with a 128-bit KEK and wrapping 256-bit keys with a 256-bit KEK are REQUIRED and all other combinations are OPTIONAL.

无论包装中使用的Camellia密钥大小如何(称为密钥加密密钥或KEK),算法都是相同的。Camellia的实现是可选的。但是,如果支持,则应遵循与AES相同的实现指南,即需要支持KEK大小和包装密钥大小的哪些组合,以及支持哪些可选组合。也就是说,如果支持Camellia密钥包装,则需要使用128位KEK包装128位密钥,使用256位KEK包装256位密钥,并且所有其他组合都是可选的。

An example of use is:

一个使用示例是:

   <EncryptionMethod
      Algorithm=
      "http://www.w3.org/2001/04/xmldsig-more#kw-camellia128" />
        
   <EncryptionMethod
      Algorithm=
      "http://www.w3.org/2001/04/xmldsig-more#kw-camellia128" />
        
2.6.4. PSEC-KEM
2.6.4. PSEC-KEM
   Identifier:
      http://www.w3.org/2001/04/xmldsig-more#psec-kem
        
   Identifier:
      http://www.w3.org/2001/04/xmldsig-more#psec-kem
        

The PSEC-KEM algorithm, specified in [ISO/IEC-18033-2], is a key encapsulation mechanism using elliptic curve encryption.

[ISO/IEC-18033-2]中规定的PSEC-KEM算法是一种使用椭圆曲线加密的密钥封装机制。

An example of use is:

一个使用示例是:

   <EncryptionMethod
      Algorithm="http://www.w3.org/2001/04/xmlenc#psec-kem">
      <ECParameters>
         <Version>version</Version>
         <FieldID>id</FieldID>
         <Curve>curve</Curve>
         <Base>base</Base>
         <Order>order</Order>
         <Cofactor>cofactor</Cofactor>
      </ECParameters>
        
   <EncryptionMethod
      Algorithm="http://www.w3.org/2001/04/xmlenc#psec-kem">
      <ECParameters>
         <Version>version</Version>
         <FieldID>id</FieldID>
         <Curve>curve</Curve>
         <Base>base</Base>
         <Order>order</Order>
         <Cofactor>cofactor</Cofactor>
      </ECParameters>
        
   </EncryptionMethod>
        
   </EncryptionMethod>
        

See [ISO/IEC-18033-2] for information on the parameters above.

有关上述参数的信息,请参见[ISO/IEC-18033-2]。

3. KeyInfo
3. 密钥信息

In section 3.1 a new KeyInfo element child is specified, while in section 3.2 additional KeyInfo Type values for use in RetrievalMethod are specified.

在第3.1节中,指定了一个新的KeyInfo元素子元素,而在第3.2节中,指定了在RetrievalMethod中使用的其他KeyInfo类型值。

3.1. PKCS #7 Bag of Certificates and CRLs
3.1. PKCS#7袋证书和CRL

A PKCS #7 [RFC2315] "signedData" can also be used as a bag of certificates and/or certificate revocation lists (CRLs). The PKCS7signedData element is defined to accommodate such structures within KeyInfo. The binary PKCS #7 structure is base64 [RFC2405] encoded. Any signer information present is ignored. The following is an example, eliding the base64 data [RFC3092]:

PKCS#7[RFC2315]“signedData”也可用作一包证书和/或证书撤销列表(CRL)。PKCS7signedData元素定义为在KeyInfo中容纳此类结构。二进制PKCS#7结构是base64[RFC2405]编码的。将忽略存在的任何签名者信息。以下是一个示例,省略base64数据[RFC3092]:

   <foo:PKCS7signedData
      xmlns:foo="http://www.w3.org/2001/04/xmldsig-more">
      ...
   </foo:PKCS7signedData>
        
   <foo:PKCS7signedData
      xmlns:foo="http://www.w3.org/2001/04/xmldsig-more">
      ...
   </foo:PKCS7signedData>
        
3.2. Additional RetrievalMethod Type Values
3.2. 其他RetrievalMethod类型值

The Type attribute of RetrievalMethod is an optional identifier for the type of data to be retrieved. The result of dereferencing a RetrievalMethod reference for all KeyInfo types with an XML structure is an XML element or document with that element as the root. The various "raw" key information types return a binary value. Thus, they require a Type attribute because they are not unambiguously parseable.

RetrievalMethod的Type属性是要检索的数据类型的可选标识符。对所有具有XML结构的KeyInfo类型取消引用RetrievalMethod引用的结果是一个XML元素或以该元素为根的文档。各种“原始”键信息类型返回二进制值。因此,它们需要一个Type属性,因为它们不能明确地解析。

   Identifiers:
      http://www.w3.org/2001/04/xmldsig-more#KeyValue
      http://www.w3.org/2001/04/xmldsig-more#RetrievalMethod
      http://www.w3.org/2001/04/xmldsig-more#KeyName
      http://www.w3.org/2001/04/xmldsig-more#rawX509CRL
      http://www.w3.org/2001/04/xmldsig-more#rawPGPKeyPacket
      http://www.w3.org/2001/04/xmldsig-more#rawSPKISexp
      http://www.w3.org/2001/04/xmldsig-more#PKCS7signedData
      http://www.w3.org/2001/04/xmldsig-more#rawPKCS7signedData
        
   Identifiers:
      http://www.w3.org/2001/04/xmldsig-more#KeyValue
      http://www.w3.org/2001/04/xmldsig-more#RetrievalMethod
      http://www.w3.org/2001/04/xmldsig-more#KeyName
      http://www.w3.org/2001/04/xmldsig-more#rawX509CRL
      http://www.w3.org/2001/04/xmldsig-more#rawPGPKeyPacket
      http://www.w3.org/2001/04/xmldsig-more#rawSPKISexp
      http://www.w3.org/2001/04/xmldsig-more#PKCS7signedData
      http://www.w3.org/2001/04/xmldsig-more#rawPKCS7signedData
        
4. IANA Considerations
4. IANA考虑

As it is easy for people to construct their own unique URIs [RFC2396] and possibly obtain a URI from the W3C if appropriate, it is not intended that any additional "http://www.w3.org/2001/04/xmldsig-more#" URIs be created beyond those enumerated in this document. (W3C Namespace stability rules prohibit the creation of new URIs under "http://www.w3.org/2000/09/xmldsig#".)

由于人们很容易构建自己独特的URI[RFC2396],并在适当的情况下可能从W3C获取URI,因此不打算使用任何其他http://www.w3.org/2001/04/xmldsig-more#“创建的URI不能超出本文档中列举的URI。(W3C命名空间稳定性规则禁止在“”下创建新URIhttp://www.w3.org/2000/09/xmldsig#".)

5. Security Considerations
5. 安全考虑

Due to computer speed and cryptographic advances, the use of MD5 as a DigestMethod and the use of MD5 in the RSA-MD5 SignatureMethod is NOT RECOMMENDED. The concerned cryptographic advances do not effect the security of HMAC-MD5; however, there is little reason not to use one of the SHA series of algorithms.

由于计算机速度和密码技术的进步,不建议使用MD5作为摘要方法,也不建议在RSA-MD5 SignatureMethod中使用MD5。相关的密码技术进步不会影响HMAC-MD5的安全性;然而,几乎没有理由不使用SHA系列算法之一。

Acknowledgements

致谢

Glenn Adams, Merlin Hughs, Gregor Karlinger, Brian LaMachia, Shiho Moriai, Joseph Reagle, Russ Housley, and Joel Halpern.

格伦·亚当斯、梅林·休斯、格雷戈·卡林格、布赖恩·拉马基亚、西霍·莫里埃、约瑟夫·雷格尔、罗斯·霍斯利和乔尔·哈尔彭。

Normative References

规范性引用文件

[Camellia] "Camellia: A 128-bit Block Cipher Suitable for Multiple Platforms - Design and Analysis -", K. Aoki, T. Ichikawa, M. Matsui, S. Moriai, J. Nakajima, T. Tokita, In Selected Areas in Cryptography, 7th Annual International Workshop, SAC 2000, August 2000, Proceedings, Lecture Notes in Computer Science 2012, pp. 39-56, Springer-Verlag, 2001.

[山茶花]“山茶花:一种适用于多平台的128位分组密码——设计和分析”,K.Aoki,T.Ichikawa,M.Matsui,S.Morai,J.Nakajima,T.Tokita,在密码学的选定领域,第七届年度国际研讨会,SAC 2000,2000年8月,会议记录,2012年计算机科学讲稿,第39-56页,Springer Verlag,2001

[ECDSA] Blake-Wilson, S., Karlinger, G., Kobayashi, T., and Y. Wang, "Using the Elliptic Curve Signature Algorithm (ECDSA) for XML Digital Signatures", RFC 4050, April 2005.

[ECDSA]Blake Wilson,S.,Karlinger,G.,Kobayashi,T.,和Y.Wang,“将椭圆曲线签名算法(ECDSA)用于XML数字签名”,RFC 4050,2005年4月。

[FIPS-180-2] "Secure Hash Standard", (SHA-1/256/384/512) US Federal Information Processing Standard, 1 August 2002.

[FIPS-180-2]“安全哈希标准”(SHA-1/256/384/512)美国联邦信息处理标准,2002年8月1日。

[FIPS-180-2change] "FIPS 180-2, Secure Hash Standard Change Notice 1", adds SHA-224 to [FIPS 180-2], 25 February 2004.

[FIPS-180-2变更]“FIPS 180-2,安全哈希标准变更通知1”,在[FIPS 180-2]中添加SHA-224,2004年2月25日。

[FIPS-186-2] "Digital Signature Standard", National Institute of Standards and Technology, 2000.

[FIPS-186-2]“数字签名标准”,国家标准与技术研究所,2000年。

[IEEE-P1363a] "Standard Specifications for Public Key Cryptography: Additional Techniques", October 2002.

[IEEE-P1363a]“公钥加密的标准规范:附加技术”,2002年10月。

[ISO/IEC-18033-2] "Information technology -- Security techniques -- Encryption algorithms -- Part 3: Asymmetric ciphers", CD, October 2002.

[ISO/IEC-18033-2]“信息技术——安全技术——加密算法——第3部分:非对称密码”,CD,2002年10月。

[RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm ", RFC 1321, April 1992.

[RFC1321]Rivest,R.,“MD5消息摘要算法”,RFC13211992年4月。

[RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-Hashing for Message Authentication", RFC 2104, February 1997.

[RFC2104]Krawczyk,H.,Bellare,M.,和R.Canetti,“HMAC:用于消息认证的键控哈希”,RFC 2104,1997年2月。

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2119]Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,1997年3月。

[RFC2396] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform Resource Identifiers (URI): Generic Syntax", RFC 2396, August 1998.

[RFC2396]Berners Lee,T.,Fielding,R.,和L.Masinter,“统一资源标识符(URI):通用语法”,RFC 2396,1998年8月。

[RFC2405] Madson, C. and N. Doraswamy, "The ESP DES-CBC Cipher Algorithm With Explicit IV", RFC 2405, November 1998.

[RFC2405]Madson,C.和N.Doraswamy,“带显式IV的ESP DES-CBC密码算法”,RFC 2405,1998年11月。

[RFC2315] Kaliski, B., "PKCS #7: Cryptographic Message Syntax Version 1.5", RFC 2315, March 1998.

[RFC2315]Kaliski,B.,“PKCS#7:加密消息语法版本1.5”,RFC 2315,1998年3月。

[RFC3075] Eastlake 3rd, D., Reagle, J., and D. Solo, "XML-Signature Syntax and Processing", RFC 3075, March 2001. (RFC 3075 was obsoleted by RFC 3275 but is referenced in this document for its description of Minimal Canonicalization which was dropped in RFC 3275.)

[RFC3075]Eastlake 3rd,D.,Reagle,J.,和D.Solo,“XML签名语法和处理”,RFC 30752001年3月。(RFC 3075已被RFC 3275淘汰,但本文件中引用了RFC 3075中关于最小规范化的描述,该描述已在RFC 3275中删除。)

[RFC3275] Eastlake 3rd, D., Reagle, J., and D. Solo, "(Extensible Markup Language) XML-Signature Syntax and Processing", RFC 3275, March 2002.

[RFC3275]Eastlake 3rd,D.,Reagle,J.,和D.Solo,“(可扩展标记语言)XML签名语法和处理”,RFC 32752002年3月。

[RFC3394] Schaad, J. and R. Housley, "Advanced Encryption Standard (AES) Key Wrap Algorithm", RFC 3394, September 2002.

[RFC3394]Schaad,J.和R.Housley,“高级加密标准(AES)密钥包裹算法”,RFC 3394,2002年9月。

[RFC3447] Jonsson, J. and B. Kaliski, "Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version 2.1", RFC 3447, February 2003.

[RFC3447]Jonsson,J.和B.Kaliski,“公钥密码标准(PKCS)#1:RSA密码规范版本2.1”,RFC 3447,2003年2月。

[RFC3713] Matsui, M., Nakajima, J., and S. Moriai, "A Description of the Camellia Encryption Algorithm", RFC 3713, April 2004.

[RFC3713]Matsui,M.,Nakajima,J.,和S.Moraii,“茶花加密算法的描述”,RFC 37132004年4月。

[RFC3874] Housley, R., "A 224-bit One-way Hash Function: SHA-224", RFC 3874, September 2004.

[RFC3874]Housley,R.,“224位单向散列函数:SHA-224”,RFC 3874,2004年9月。

[RIPEMD-160] ISO/IEC 10118-3:1998, "Information Technology - Security techniques - Hash-functions - Part3: Dedicated hash- functions", ISO, 1998.

[RIPEMD-160]ISO/IEC 10118-3:1998,“信息技术-安全技术-哈希函数-第3部分:专用哈希函数”,ISO,1998。

[X9.62] X9.62-200X, "Public Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA)", Accredited Standards Committee X9, American National Standards Institute.

[X9.62]X9.62-200X,“金融服务业的公钥加密:椭圆曲线数字签名算法(ECDSA)”,美国国家标准协会认证标准委员会X9。

   [XMLDSIG]          "XML-Signature Syntax and Processing", D. Eastlake
                      3rd, J. Reagle, & D. Solo, 12 February 2002.
                      <http://www.w3.org/TR/xmldsig-core/>
        
   [XMLDSIG]          "XML-Signature Syntax and Processing", D. Eastlake
                      3rd, J. Reagle, & D. Solo, 12 February 2002.
                      <http://www.w3.org/TR/xmldsig-core/>
        
   [XMLENC]           "XML Encryption Syntax and Processing", J. Reagle,
                      D.  Eastlake, December 2002.
                      <http://www.w3.org/TR/2001/RED-xmlenc-core-
                      20021210/>
        
   [XMLENC]           "XML Encryption Syntax and Processing", J. Reagle,
                      D.  Eastlake, December 2002.
                      <http://www.w3.org/TR/2001/RED-xmlenc-core-
                      20021210/>
        
   [XPointer]         "XML Pointer Language (XPointer) Version 1.0", W3C
                      working draft, Steve DeRose, Eve Maler, Ron Daniel
                      Jr., January 2001.
                      <http://www.w3.org/TR/2001/WD-xptr-20010108>
        
   [XPointer]         "XML Pointer Language (XPointer) Version 1.0", W3C
                      working draft, Steve DeRose, Eve Maler, Ron Daniel
                      Jr., January 2001.
                      <http://www.w3.org/TR/2001/WD-xptr-20010108>
        

Informative References

资料性引用

[CANON] "Canonical XML Version 1.0", John Boyer. <http://www.w3.org/TR/2001/REC-xml-c14n-20010315>.

[CANON]“规范XML 1.0版”,John Boyer<http://www.w3.org/TR/2001/REC-xml-c14n-20010315>.

[EXCANON] "Exclusive XML Canonicalization Version 1.0", D. Eastlake, J. Reagle, 18 July 2002. <http://www.w3.org/TR/REC-xml-enc-c14n-20020718/>.

[EXCANON]“独家XML规范化版本1.0”,D.Eastlake,J.Reagle,2002年7月18日<http://www.w3.org/TR/REC-xml-enc-c14n-20020718/>.

[RFC3076] Boyer, J., "Canonical XML Version 1.0", RFC 3076, March 2001.

[RFC3076]Boyer,J.,“规范XML版本1.0”,RFC3076,2001年3月。

[RFC3092] Eastlake 3rd, D., Manros, C., and E. Raymond, "Etymology of "Foo"", RFC 3092, 2001.

[RFC3092]伊斯特莱克三世,D.,曼罗斯,C.,和E.雷蒙德,“Foo”的词源学”,RFC30922001年。

[RFC3741] Boyer, J., Eastlake 3rd, D., and J. Reagle, "Exclusive XML Canonicalization, Version 1.0", RFC 3741, March 2004.

[RFC3741]Boyer,J.,Eastlake 3rd,D.,和J.Reagle,“独家XML规范化,版本1.0”,RFC 37412004年3月。

Author's Address

作者地址

Donald E. Eastlake 3rd Motorola Laboratories 155 Beaver Street Milford, MA 01757 USA

Donald E.Eastlake 3rd Motorola Laboratories美国马萨诸塞州米尔福德市海狸街155号,邮编01757

   Phone: +1-508-786-7554 (w)
          +1-508-634-2066 (h)
   EMail: Donald.Eastlake@motorola.com
        
   Phone: +1-508-786-7554 (w)
          +1-508-634-2066 (h)
   EMail: Donald.Eastlake@motorola.com
        

Full Copyright Statement

完整版权声明

Copyright (C) The Internet Society (2005).

版权所有(C)互联网协会(2005年)。

This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.

本文件受BCP 78中包含的权利、许可和限制的约束,除其中规定外,作者保留其所有权利。

This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

本文件及其包含的信息是按“原样”提供的,贡献者、他/她所代表或赞助的组织(如有)、互联网协会和互联网工程任务组不承担任何明示或暗示的担保,包括但不限于任何保证,即使用本文中的信息不会侵犯任何权利,或对适销性或特定用途适用性的任何默示保证。

Intellectual Property

知识产权

The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79.

IETF对可能声称与本文件所述技术的实施或使用有关的任何知识产权或其他权利的有效性或范围,或此类权利下的任何许可可能或可能不可用的程度,不采取任何立场;它也不表示它已作出任何独立努力来确定任何此类权利。有关RFC文件中权利的程序信息,请参见BCP 78和BCP 79。

Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.

向IETF秘书处披露的知识产权副本和任何许可证保证,或本规范实施者或用户试图获得使用此类专有权利的一般许可证或许可的结果,可从IETF在线知识产权存储库获取,网址为http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.

IETF邀请任何相关方提请其注意任何版权、专利或专利申请,或其他可能涵盖实施本标准所需技术的专有权利。请将信息发送至IETF的IETF-ipr@ietf.org.

Acknowledgement

确认

Funding for the RFC Editor function is currently provided by the Internet Society.

RFC编辑功能的资金目前由互联网协会提供。