Network Working Group                                       H. Berkowitz
Request for Comments: 4098            Gett Communications & CCI Training
Category: Informational                                   E. Davies, Ed.
                                                        Folly Consulting
                                                                S. Hares
                                                    Nexthop Technologies
                                                         P. Krishnaswamy
                                                                    SAIC
                                                                 M. Lepp
                                                              Consultant
                                                               June 2005
        
Network Working Group                                       H. Berkowitz
Request for Comments: 4098            Gett Communications & CCI Training
Category: Informational                                   E. Davies, Ed.
                                                        Folly Consulting
                                                                S. Hares
                                                    Nexthop Technologies
                                                         P. Krishnaswamy
                                                                    SAIC
                                                                 M. Lepp
                                                              Consultant
                                                               June 2005
        

Terminology for Benchmarking BGP Device Convergence in the Control Plane

控制平面内BGP设备聚合基准测试术语

Status of This Memo

关于下段备忘

This memo provides information for the Internet community. It does not specify an Internet standard of any kind. Distribution of this memo is unlimited.

本备忘录为互联网社区提供信息。它没有规定任何类型的互联网标准。本备忘录的分发不受限制。

Copyright Notice

版权公告

Copyright (C) The Internet Society (2005).

版权所有(C)互联网协会(2005年)。

Abstract

摘要

This document establishes terminology to standardize the description of benchmarking methodology for measuring eBGP convergence in the control plane of a single BGP device. Future documents will address iBGP convergence, the initiation of forwarding based on converged control plane information and multiple interacting BGP devices. This terminology is applicable to both IPv4 and IPv6. Illustrative examples of each version are included where relevant.

本文件确立了标准化描述基准方法的术语,用于测量单个BGP设备控制平面内的eBGP收敛性。未来的文档将讨论iBGP聚合、基于聚合控制平面信息和多个交互BGP设备发起转发。此术语适用于IPv4和IPv6。在相关的地方包括每个版本的说明性示例。

Table of Contents

目录

   1. Introduction ....................................................3
      1.1. Overview and Road Map ......................................4
      1.2. Definition Format ..........................................5
   2. Components and Characteristics of Routing Information ...........5
      2.1. (Network) Prefix ...........................................5
      2.2. Network Prefix Length ......................................6
      2.3. Route ......................................................6
      2.4. BGP Route ..................................................7
      2.5. Network Level Reachability Information (NLRI) ..............7
      2.6. BGP UPDATE Message .........................................8
   3. Routing Data Structures and Route Categories ....................8
      3.1. Routing Information Base (RIB) .............................8
           3.1.1. Adj-RIB-In and Adj-RIB-Out ..........................8
           3.1.2. Loc-RIB .............................................9
      3.2. Prefix Filtering ...........................................9
      3.3. Routing Policy ............................................10
      3.4. Routing Policy Information Base ...........................10
      3.5. Forwarding Information Base (FIB) .........................11
      3.6. BGP Instance ..............................................12
      3.7. BGP Device ................................................12
      3.8. BGP Session ...............................................13
      3.9. Active BGP Session ........................................13
      3.10. BGP Peer .................................................13
      3.11. BGP Neighbor .............................................14
      3.12. MinRouteAdvertisementInterval (MRAI) .....................14
      3.13. MinASOriginationInterval (MAOI) ..........................15
      3.14. Active Route .............................................15
      3.15. Unique Route .............................................15
      3.16. Non-Unique Route .........................................16
      3.17. Route Instance ...........................................16
   4. Constituent Elements of a Router or Network of Routers .........17
      4.1. Default Route, Default-Free Table, and Full Table .........17
           4.1.1. Default Route ......................................17
           4.1.2. Default-Free Routing Table .........................18
           4.1.3. Full Default-Free Table ............................18
           4.1.4. Default-Free Zone ..................................19
           4.1.5. Full Provider-Internal Table .......................19
      4.2. Classes of BGP-Speaking Routers ...........................19
           4.2.1. Provider Edge Router ...............................20
           4.2.2. Subscriber Edge Router .............................20
           4.2.3. Inter-provider Border Router .......................21
           4.2.4. Core Router ........................................21
   5. Characterization of Sets of Update Messages ....................22
      5.1. Route Packing .............................................22
      5.2. Route Mixture .............................................23
      5.3. Update Train ..............................................24
        
   1. Introduction ....................................................3
      1.1. Overview and Road Map ......................................4
      1.2. Definition Format ..........................................5
   2. Components and Characteristics of Routing Information ...........5
      2.1. (Network) Prefix ...........................................5
      2.2. Network Prefix Length ......................................6
      2.3. Route ......................................................6
      2.4. BGP Route ..................................................7
      2.5. Network Level Reachability Information (NLRI) ..............7
      2.6. BGP UPDATE Message .........................................8
   3. Routing Data Structures and Route Categories ....................8
      3.1. Routing Information Base (RIB) .............................8
           3.1.1. Adj-RIB-In and Adj-RIB-Out ..........................8
           3.1.2. Loc-RIB .............................................9
      3.2. Prefix Filtering ...........................................9
      3.3. Routing Policy ............................................10
      3.4. Routing Policy Information Base ...........................10
      3.5. Forwarding Information Base (FIB) .........................11
      3.6. BGP Instance ..............................................12
      3.7. BGP Device ................................................12
      3.8. BGP Session ...............................................13
      3.9. Active BGP Session ........................................13
      3.10. BGP Peer .................................................13
      3.11. BGP Neighbor .............................................14
      3.12. MinRouteAdvertisementInterval (MRAI) .....................14
      3.13. MinASOriginationInterval (MAOI) ..........................15
      3.14. Active Route .............................................15
      3.15. Unique Route .............................................15
      3.16. Non-Unique Route .........................................16
      3.17. Route Instance ...........................................16
   4. Constituent Elements of a Router or Network of Routers .........17
      4.1. Default Route, Default-Free Table, and Full Table .........17
           4.1.1. Default Route ......................................17
           4.1.2. Default-Free Routing Table .........................18
           4.1.3. Full Default-Free Table ............................18
           4.1.4. Default-Free Zone ..................................19
           4.1.5. Full Provider-Internal Table .......................19
      4.2. Classes of BGP-Speaking Routers ...........................19
           4.2.1. Provider Edge Router ...............................20
           4.2.2. Subscriber Edge Router .............................20
           4.2.3. Inter-provider Border Router .......................21
           4.2.4. Core Router ........................................21
   5. Characterization of Sets of Update Messages ....................22
      5.1. Route Packing .............................................22
      5.2. Route Mixture .............................................23
      5.3. Update Train ..............................................24
        
      5.4. Randomness in Update Trains ...............................24
      5.5. Route Flap ................................................25
   6. Route Changes and Convergence ..................................25
      6.1. Route Change Events .......................................25
      6.2. Device Convergence in the Control Plane ...................27
   7. BGP Operation Events ...........................................28
      7.1. Hard Reset ................................................28
      7.2. Soft Reset ................................................29
   8. Factors That Impact the Performance of the Convergence
      Process ........................................................29
      8.1. General Factors Affecting Device Convergence ..............29
           8.1.1. Number of Peers ....................................29
           8.1.2. Number of Routes per Peer ..........................30
           8.1.3. Policy Processing/Reconfiguration ..................30
           8.1.4. Interactions with Other Protocols ..................30
           8.1.5. Flap Damping .......................................30
           8.1.6. Churn ..............................................31
      8.2. Implementation-Specific and Other Factors Affecting BGP ...31
           8.2.1. Forwarded Traffic ..................................31
           8.2.2. Timers .............................................32
           8.2.3. TCP Parameters Underlying BGP Transport ............32
           8.2.4. Authentication .....................................32
   9. Security Considerations ........................................32
   10. Acknowledgements ..............................................32
   11. References ....................................................33
       11.1. Normative References ....................................33
       11.2. Informative References ..................................34
        
      5.4. Randomness in Update Trains ...............................24
      5.5. Route Flap ................................................25
   6. Route Changes and Convergence ..................................25
      6.1. Route Change Events .......................................25
      6.2. Device Convergence in the Control Plane ...................27
   7. BGP Operation Events ...........................................28
      7.1. Hard Reset ................................................28
      7.2. Soft Reset ................................................29
   8. Factors That Impact the Performance of the Convergence
      Process ........................................................29
      8.1. General Factors Affecting Device Convergence ..............29
           8.1.1. Number of Peers ....................................29
           8.1.2. Number of Routes per Peer ..........................30
           8.1.3. Policy Processing/Reconfiguration ..................30
           8.1.4. Interactions with Other Protocols ..................30
           8.1.5. Flap Damping .......................................30
           8.1.6. Churn ..............................................31
      8.2. Implementation-Specific and Other Factors Affecting BGP ...31
           8.2.1. Forwarded Traffic ..................................31
           8.2.2. Timers .............................................32
           8.2.3. TCP Parameters Underlying BGP Transport ............32
           8.2.4. Authentication .....................................32
   9. Security Considerations ........................................32
   10. Acknowledgements ..............................................32
   11. References ....................................................33
       11.1. Normative References ....................................33
       11.2. Informative References ..................................34
        
1. Introduction
1. 介绍

This document defines terminology for use in characterizing the convergence performance of BGP processes in routers or other devices that instantiate BGP functionality. (See 'A Border Gateway Protocol 4 (BGP-4)' [RFC1771], referred to as RFC 1771 in the remainder of the document.) It is the first part of a two-document series, of which the subsequent document will contain the associated tests and methodology. This terminology is applicable to both IPv4 and IPv6. Illustrative examples of each version are included where relevant. However, this document is primarily targeted for BGP-4 in IPv4 networks. IPv6 will require the use of MP-BGP [RFC2858], as described in RFC 2545 [RFC2545], but this document will not address terminology or issues specific to these extensions of BGP-4. Also terminology and issues specific to the extensions of BGP that support VPNs as described in RFC 2547 [RFC2547] are out of scope for this document.

本文档定义了用于描述路由器或其他实例化BGP功能的设备中BGP进程的收敛性能的术语。(参见“边境网关协议4(BGP-4)”[RFC1771],在本文件其余部分中称为RFC 1771。)它是两个文件系列的第一部分,后续文件将包含相关测试和方法。此术语适用于IPv4和IPv6。在相关的地方包括每个版本的说明性示例。但是,本文档主要针对IPv4网络中的BGP-4。IPv6将需要使用MP-BGP[RFC2858],如RFC 2545[RFC2545]中所述,但本文件不会涉及BGP-4这些扩展的特定术语或问题。此外,RFC 2547[RFC2547]中描述的支持VPN的BGP扩展的特定术语和问题不在本文档范围内。

The following observations underlie the approach adopted in this document, and in the companion document:

以下观察结果构成了本文件和配套文件中采用的方法的基础:

o The principal objective is to derive methodologies that standardize conducting and reporting convergence-related measurements for BGP.

o 主要目标是制定方法,以标准化BGP的收敛相关测量的执行和报告。

o It is necessary to remove ambiguity from many frequently used terms that arise in the context of these measurements.

o 有必要消除这些测量中出现的许多常用术语的歧义。

o As convergence characterization is a complex process, it is desirable to restrict the initial focus in this set of documents to specifying how to take basic control-plane measurements as a first step in characterizing BGP convergence.

o 由于收敛性表征是一个复杂的过程,因此希望将这组文档中的初始焦点限制为指定如何进行基本控制平面测量,作为表征BGP收敛性的第一步。

For path-vector protocols, such as BGP, the primary initial focus will therefore be on network and system control-plane [RFC3654] activity consisting of the arrival, processing, and propagation of routing information.

因此,对于路径向量协议(如BGP),主要的初始重点将是网络和系统控制平面[RFC3654]活动,包括路由信息的到达、处理和传播。

We note that for testing purposes, all optional parameters SHOULD be turned off. All variable parameters SHOULD be at their default setting unless the test specifies otherwise.

我们注意到,出于测试目的,应关闭所有可选参数。除非测试另有规定,否则所有变量参数都应处于默认设置。

Subsequent documents will explore the more intricate aspects of convergence measurement, such as the impacts of the presence of Multiprotocol Extensions for BGP-4, policy processing, simultaneous traffic on the control and data paths within the Device Under Test (DUT), and other realistic performance modifiers. Convergence of Interior Gateway Protocols (IGPs) will also be considered in separate documents.

后续文件将探讨收敛测量的更复杂方面,如BGP-4多协议扩展的存在、策略处理、被测设备(DUT)内控制和数据路径上的同时通信量以及其他实际性能修改器的影响。内部网关协议(IGP)的融合也将在单独的文件中考虑。

1.1. Overview and Road Map
1.1. 概览和路线图

Characterizations of the BGP convergence performance of a device must-take into account all distinct stages and aspects of BGP. functionality. This requires that the relevant terms and metrics be as specifically defined as possible. Such definition is the goal of this document.

设备BGP收敛性能的表征必须考虑BGP的所有不同阶段和方面。功能。这要求尽可能明确地定义相关术语和指标。这种定义是本文件的目标。

The necessary definitions are classified into separate categories:

必要的定义分为不同的类别:

o Components and characteristics of routing information

o 路由信息的组成和特征

o Routing data structures and route categories

o 路由数据结构和路由类别

o Descriptions of the constituent elements of a network or a router that is undergoing convergence

o 描述正在进行融合的网络或路由器的组成元素

o Characterization of sets of update messages, types of route-change events, as well as some events specific to BGP operation

o 更新消息集、路由更改事件类型以及特定于BGP操作的某些事件的特征

o Descriptions of factors that impact the performance of convergence processes

o 影响收敛过程性能的因素说明

1.2. Definition Format
1.2. 定义格式

The definition format is equivalent to that defined in 'Requirements for IP Version 4 Routers' [RFC1812], and is repeated here for convenience:

定义格式等同于“IP版本4路由器的要求”[RFC1812]中定义的格式,为方便起见,在此重复:

X.x Term to be defined (e.g., Latency).

待定义的X.X术语(例如,延迟)。

Definition: One or more sentences forming the body of the definition.

定义:构成定义主体的一个或多个句子。

Discussion: A brief discussion of the term, its application, and any restrictions that there might be on measurement procedures.

讨论:简要讨论该术语及其应用,以及对测量程序可能存在的任何限制。

Measurement units: The units used to report measurements of this term. This item may not be applicable (N.A.).

测量单位:用于报告本术语测量值的单位。本项可能不适用(不适用)。

Issues: List of issues or conditions that could affect this term.

问题:可能影响本术语的问题或条件列表。

See also: List of related terms that are relevant to the definition or discussion of this term.

另见:与本术语定义或讨论相关的相关术语列表。

2. Components and Characteristics of Routing Information
2. 路由信息的组成和特征
2.1. (Network) Prefix
2.1. (网络)前缀

Definition: "A network prefix is a contiguous set of bits at the more significant end of the address that collectively designates the set of systems within a network; host numbers select among those systems." (This definition is taken directly from section 2.2.5.2, "Classless Inter Domain Routing (CIDR)", of RFC 1812.)

定义:“网络前缀是地址更重要端的一组连续位,共同指定网络中的一组系统;主机号在这些系统中进行选择。”(该定义直接取自RFC 1812第2.2.5.2节“无类域间路由(CIDR)”。)

Discussion: In the CIDR context, the network prefix is the network component of an IP address. In IPv4 systems, the network component of a complete address is known as the 'network part', and the remaining part of the address is known as the 'host part'. In IPv6 systems,

讨论:在CIDR上下文中,网络前缀是IP地址的网络组件。在IPv4系统中,完整地址的网络组件称为“网络部分”,地址的其余部分称为“主机部分”。在IPv6系统中,

the network component of a complete address is known as the 'subnet prefix', and the remaining part is known as the 'interface identifier'.

完整地址的网络组件称为“子网前缀”,其余部分称为“接口标识符”。

Measurement units: N.A.

计量单位:不适用。

Issues:

问题:

See also:

另见:

2.2. Network Prefix Length
2.2. 网络前缀长度

Definition: The network prefix length is the number of bits, out of the total constituting the address field, that define the network prefix portion of the address.

定义:网络前缀长度是构成地址字段的总位数中定义地址的网络前缀部分的位数。

Discussion: A common alternative to using a bit-wise mask to communicate this component is the use of slash (/) notation. This binds the notion of network prefix length in bits to an IP address. For example, 141.184.128.0/17 indicates that the network component of this IPv4 address is 17 bits wide. Similar notation is used for IPv6 network prefixes; e.g., 2001:db8:719f::/48. When referring to groups of addresses, the network prefix length is often used as a means of describing groups of addresses as an equivalence class. For example, 'one hundred /16 addresses' refers to 100 addresses whose network prefix length is 16 bits.

讨论:使用位掩码与该组件通信的常见替代方法是使用斜杠(/)表示法。这将网络前缀长度(以位为单位)的概念绑定到IP地址。例如,141.184.128.0/17表示此IPv4地址的网络组件的宽度为17位。IPv6网络前缀使用类似的表示法;e、 g.,2001:db8:719f::/48。当提及地址组时,网络前缀长度通常用作将地址组描述为等价类的一种方法。例如,“100/16地址”是指网络前缀长度为16位的100个地址。

Measurement units: Bits.

测量单位:位。

Issues:

问题:

See also: Network Prefix.

另请参见:网络前缀。

2.3. Route
2.3. 路线

Definition: In general, a 'route' is the n-tuple <prefix, nexthop [, other routing or non-routing protocol attributes]>. A route is not end-to-end, but is defined with respect to a specific next hop that should take packets on the next step toward their destination as defined by the prefix. In this usage, a route is the basic unit of information about a target destination distilled from routing protocols.

定义:“路由”通常是n元组<前缀,nexthop[,其他路由或非路由协议属性]>。路由不是端到端的,而是根据特定的下一跳定义的,该下一跳应将下一步的数据包带向前缀定义的目的地。在这种用法中,路由是从路由协议中提取的有关目标目的地的基本信息单元。

Discussion: This term refers to the concept of a route common to all routing protocols. With reference to the definition above, typical non-routing-protocol attributes would be associated with diffserv or traffic engineering.

讨论:该术语指所有路由协议共用的路由概念。参考上述定义,典型的非路由协议属性将与diffserv或流量工程相关联。

Measurement units: N.A.

计量单位:不适用。

Issues: None.

问题:没有。

See also: BGP Route.

另请参见:BGP路由。

2.4. BGP Route
2.4. BGP路由

Definition: A BGP route is an n-tuple <prefix, nexthop, ASpath [, other BGP attributes]>.

定义:BGP路由是一个n元组<前缀,nexthop,ASpath[,其他BGP属性]>。

Discussion: BGP Attributes, such as Nexthop or AS path, are defined in RFC 1771, where they are known as Path Attributes, and they are the qualifying data that define the route. From RFC 1771: "For purposes of this protocol a route is defined as a unit of information that pairs a destination with the attributes of a path to that destination."

讨论:BGP属性,如Nexthop或as path,在RFC 1771中定义,它们被称为路径属性,它们是定义路由的限定数据。来自RFC1771:“为了本协议的目的,路由被定义为一个信息单元,它将一个目的地与该目的地的路径属性配对。”

Measurement units: N.A.

计量单位:不适用。

Issues:

问题:

See also: Route, Prefix, Adj-RIB-In, Network Level Reachability Information (NLRI)

另请参见:路由、前缀、Adj RIB In、网络级可达性信息(NLRI)

2.5. Network Level Reachability Information (NLRI)
2.5. 网络级可达性信息(NLRI)

Definition: The NLRI consists of one or more network prefixes with the same set of path attributes.

定义:NLRI由一个或多个具有相同路径属性集的网络前缀组成。

Discussion: Each prefix in the NLRI is combined with the (common) path attributes to form a BGP route. The NLRI encapsulates a set of destinations to which packets can be routed (from this point in the network) along a common route described by the path attributes.

讨论:NLRI中的每个前缀都与(公共)路径属性相结合,以形成BGP路由。NLRI封装了一组目的地,数据包可以沿着路径属性描述的公共路由(从网络中的这一点)路由到这些目的地。

Measurement units: N.A.

计量单位:不适用。

Issues:

问题:

See also: Route Packing, Network Prefix, BGP Route, NLRI.

另请参见:路由打包、网络前缀、BGP路由、NLRI。

2.6. BGP UPDATE Message
2.6. BGP更新消息

Definition: An UPDATE message contains an advertisement of a single NLRI field, possibly containing multiple prefixes, and multiple withdrawals of unfeasible routes. See RFC 1771 for details.

定义:更新消息包含单个NLRI字段的播发,可能包含多个前缀,以及不可行路由的多次撤回。详见RFC 1771。

Discussion: From RFC 1771: "A variable length sequence of path attributes is present in every UPDATE. Each path attribute is a triple <attribute type, attribute length, attribute value> of variable length."

讨论:来自RFC1771:“每次更新中都会出现一个可变长度的路径属性序列。每个路径属性都是可变长度的三重<attribute type,attribute length,attribute value>。”

Measurement units: N.A.

计量单位:不适用。

See also:

另见:

3. Routing Data Structures and Route Categories
3. 路由数据结构和路由类别
3.1. Routing Information Base (RIB)
3.1. 路由信息库(RIB)

The RIB collectively consists of a set of logically (not necessarily physically) distinct databases, each of which is enumerated below. The RIB contains all destination prefixes to which the router may forward, and one or more currently reachable next hop addresses for them.

RIB总体上由一组逻辑上(不一定是物理上)不同的数据库组成,下面列举了每个数据库。RIB包含路由器可能转发到的所有目标前缀,以及它们的一个或多个当前可到达的下一跳地址。

Routes included in this set potentially have been selected from several sources of information, including hardware status, interior routing protocols, and exterior routing protocols. RFC 1812 contains a basic set of route selection criteria relevant in an all-source context. Many implementations impose additional criteria. A common implementation-specific criterion is the preference given to different routing information sources.

此集合中包含的路由可能已从多个信息源中选择,包括硬件状态、内部路由协议和外部路由协议。RFC1812包含一组与所有源上下文相关的路由选择标准。许多实现都附加了额外的标准。一个常见的特定于实现的标准是优先考虑不同的路由信息源。

3.1.1. Adj-RIB-In and Adj-RIB-Out
3.1.1. 调整肋进和调整肋出

Definition: Adj-RIB-In and Adj-RIB-Out are "views" of routing information from the perspective of individual peer routers. The Adj-RIB-In contains information advertised to the DUT by a specific peer.

定义:Adj RIB In和Adj RIB Out是从单个对等路由器的角度对路由信息的“视图”。Adj RIB In包含特定对等方向DUT发布的信息。

The Adj-RIB-Out contains the information the DUT will advertise to the peer. See RFC 1771.

Adj RIB Out包含DUT将向对等方公布的信息。见RFC 1771。

Discussion:

讨论:

Issues:

问题:

Measurement units: Number of route instances.

度量单位:路由实例数。

See also: Route, BGP Route, Route Instance, Loc-RIB, FIB.

另请参见:路由、BGP路由、路由实例、Loc RIB、FIB。

3.1.2. Loc-RIB
3.1.2. 罗纹

Definition: The Loc-RIB contains the set of best routes selected from the various Adj-RIBs, after applying local policies and the BGP route selection algorithm.

定义:Loc RIB包含应用本地策略和BGP路由选择算法后从各种Adj RIB中选择的最佳路由集。

Discussion: The separation implied among the various RIBs is logical. It does not necessarily follow that these RIBs are distinct and separate entities in any given implementation. Types of routes that need to be considered include internal BGP, external BGP, interface, static, and IGP routes.

讨论:各种肋骨之间的分隔是合乎逻辑的。在任何给定的实现中,这些肋骨都不一定是独立的实体。需要考虑的路由类型包括内部BGP、外部BGP、接口、静态和IGP路由。

Issues:

问题:

Measurement units: Number of routes.

测量单位:路由数。

See also: Route, BGP Route, Route Instance, Adj-RIB-In, Adj-RIB-Out, FIB.

另请参见:布线、BGP布线、布线实例、调整加强筋输入、调整加强筋输出、FIB。

3.2. Prefix Filtering
3.2. 前缀过滤

Definition: Prefix Filtering is a technique for eliminating routes from consideration as candidates for entry into a RIB by matching the network prefix in a BGP Route against a list of network prefixes.

定义:前缀过滤是一种技术,通过将BGP路由中的网络前缀与网络前缀列表相匹配,将路由排除在进入RIB的候选路由之外。

Discussion: A BGP Route is eliminated if, for any filter prefix from the list, the Route prefix length is equal to or longer than the filter prefix length and the most significant bits of the two prefixes

讨论:如果对于列表中的任何筛选器前缀,路由前缀长度等于或大于筛选器前缀长度以及两个前缀的最高有效位,则取消BGP路由

match over the length of the filter prefix. See 'Cooperative Route Filtering Capability for BGP-4' [BGP-4] for examples of usage.

匹配过滤器前缀的长度。有关使用示例,请参阅“BGP-4的协作路由过滤功能”[BGP-4]。

Measurement units: Number of filter prefixes; lengths of prefixes.

测量单位:过滤器前缀的数量;前缀的长度。

Issues:

问题:

See also: BGP Route, Network Prefix, Network Prefix Length, Routing Policy, Routing Policy Information Base.

另请参见:BGP路由、网络前缀、网络前缀长度、路由策略、路由策略信息库。

3.3. Routing Policy
3.3. 路由策略

Definition: Routing Policy is "the ability to define conditions for accepting, rejecting, and modifying routes received in advertisements" [GLSSRY].

定义:路由策略是“定义接受、拒绝和修改广告中接收的路由条件的能力”[GLSSRY]。

Discussion: RFC 1771 further constrains policy to be within the hop-by-hop routing paradigm. Policy is implemented using filters and associated policy actions such as Prefix Filtering. Many ASes formulate and document their policies using the Routing Policy Specification Language (RPSL) [RFC2622] and then automatically generate configurations for the BGP processes in their routers from the RPSL specifications.

讨论:RFC1771进一步将策略限制在逐跳路由范式内。策略是使用筛选器和相关策略操作(如前缀筛选)实现的。许多ASE使用路由策略规范语言(RPSL)[RFC2622]制定并记录其策略,然后根据RPSL规范自动生成路由器中BGP进程的配置。

Measurement units: Number of policies; length of policies.

计量单位:保单数量;政策的长度。

Issues:

问题:

See also: Routing Policy Information Base, Prefix Filtering.

另请参见:路由策略信息库,前缀筛选。

3.4. Routing Policy Information Base
3.4. 路由策略信息库

Definition: A routing policy information base is the set of incoming and outgoing policies.

定义:路由策略信息库是传入和传出策略的集合。

Discussion: All references to the phase of the BGP selection process below are made with respect to RFC 1771 definition of these phases. Incoming policies are applied in Phase 1 of the BGP selection process to the Adj-RIB-In routes to set the metric for the Phase 2

讨论:下文提及的BGP选择过程的所有阶段均与RFC 1771对这些阶段的定义有关。传入策略在BGP选择过程的第1阶段应用于Adj RIB in routes,以设置第2阶段的度量

decision process. Outgoing Policies are applied in Phase 3 of the BGP process to the Adj-RIB-Out routes preceding route (prefix and path attribute tuple) announcements to a specific peer. Policies in the Policy Information Base have matching and action conditions. Common information to match includes route prefixes, AS paths, communities, etc. The action on match may be to drop the update and not to pass it to the Loc-RIB, or to modify the update in some way, such as changing local preference (on input) or MED (on output), adding or deleting communities, prepending the current AS in the AS path, etc. The amount of policy processing (both in terms of route maps and filter/access lists) will impact the convergence time and properties of the distributed BGP algorithm. The amount of policy processing may vary from a simple policy that accepts all routes and sends them according to a complex policy with a substantial fraction of the prefixes being filtered by filter/access lists.

决策过程。传出策略在BGP过程的第3阶段应用于特定对等方的路由(前缀和路径属性元组)公告之前的Adj RIB Out路由。策略信息库中的策略具有匹配和操作条件。要匹配的公共信息包括路由前缀、AS路径、社区等。匹配时的操作可能是删除更新,而不是将其传递给Loc RIB,或者以某种方式修改更新,例如更改本地首选项(输入时)或MED(输出时),添加或删除社区,在AS路径中预先设置当前AS,等。策略处理量(包括路由图和过滤器/访问列表)将影响分布式BGP算法的收敛时间和性能。策略处理的数量可能与接受所有路由并根据复杂策略发送它们的简单策略不同,复杂策略中有很大一部分前缀由过滤器/访问列表过滤。

Measurement units: Number and length of policies.

度量单位:策略的数量和长度。

Issues:

问题:

See also:

另见:

3.5. Forwarding Information Base (FIB)
3.5. 转发信息库(FIB)

Definition: According to the definition in Appendix B of RIPE-37 [RIPE37]: "The table containing the information necessary to forward IP Datagrams is called the Forwarding Information Base. At minimum, this contains the interface identifier and next hop information for each reachable destination network prefix."

定义:根据RIPE-37[RIPE37]附录B中的定义:“包含转发IP数据报所需信息的表称为转发信息库。该表至少包含每个可到达目的地网络前缀的接口标识符和下一跳信息。”

Discussion: The forwarding information base describes a database indexing network prefixes versus router port identifiers. The forwarding information base is distinct from the "routing table" (the Routing Information Base or RIB), which holds all routing information received from routing peers. It is a data plane construct and is used for the forwarding of each packet. The Forwarding Information Base is generated from the RIB. For the purposes of this document, the FIB is effectively the subset of the RIB used by the forwarding plane to make per-packet forwarding decisions. Most current implementations have full, non-cached FIBs per router interface. All the route computation and convergence occurs before entries are downloaded into a FIB.

讨论:转发信息库描述了数据库索引网络前缀与路由器端口标识符。转发信息库不同于“路由表”(路由信息库或RIB),后者保存从路由对等方接收的所有路由信息。它是一个数据平面结构,用于转发每个数据包。转发信息库由RIB生成。就本文件而言,FIB实际上是转发平面用于作出每包转发决策的RIB的子集。大多数当前的实现每个路由器接口都有完整的、非缓存的FIB。所有路由计算和收敛都发生在条目下载到FIB之前。

Measurement units: N.A.

计量单位:不适用。

Issues:

问题:

See also: Route, RIB.

另见:路线,肋骨。

3.6. BGP Instance
3.6. BGP实例

Definition: A BGP instance is a process with a single Loc-RIB.

定义:BGP实例是一个具有单个Loc RIB的进程。

Discussion: For example, a BGP instance would run in routers or test equipment. A test generator acting as multiple peers will typically run more than one instance of BGP. A router would typically run a single instance.

讨论:例如,BGP实例将在路由器或测试设备中运行。作为多个对等方的测试生成器通常会运行多个BGP实例。路由器通常只运行一个实例。

Measurement units: N.A.

计量单位:不适用。

Issues:

问题:

See also:

另见:

3.7. BGP Device
3.7. BGP器件

Definition: A BGP device is a system that has one or more BGP instances running on it, each of which is responsible for executing the BGP state machine.

定义:BGP设备是在其上运行一个或多个BGP实例的系统,每个BGP实例负责执行BGP状态机。

Discussion: We have chosen to use "device" as the general case, to deal with the understood (e.g., [GLSSRY]) and yet-to-be-invented cases where the control processing may be separate from forwarding [RFC2918]. A BGP device may be a traditional router, a route server, a BGP-aware traffic steering device, or a non-forwarding route reflector. BGP instances such as route reflectors or servers, for example, never forward traffic, so forwarding-based measurements would be meaningless for them.

讨论:我们选择使用“设备”作为一般情况,以处理已理解(例如,[GLSSRY])和尚未发明的控制处理可能与转发分离的情况[RFC2918]。BGP设备可以是传统路由器、路由服务器、感知BGP的流量控制设备或非转发路由反射器。例如,路由反射器或服务器之类的BGP实例从不转发流量,因此基于转发的测量对它们来说毫无意义。

Measurement units: N.A.

计量单位:不适用。

Issues:

问题:

See also:

另见:

3.8. BGP Session
3.8. BGP会话

Definition: A BGP session is a session between two BGP instances.

定义:BGP会话是两个BGP实例之间的会话。

Discussion:

讨论:

Measurement units: N.A.

计量单位:不适用。

Issues:

问题:

See also:

另见:

3.9. Active BGP Session
3.9. 活动BGP会话

Definition: An active BGP session is one that is in the established state. (See RFC 1771.)

定义:活动BGP会话是处于已建立状态的会话。(见RFC 1771。)

Discussion:

讨论:

Measurement units: N.A.

计量单位:不适用。

Issues:

问题:

See also:

另见:

3.10. BGP Peer
3.10. BGP对等机

Definition: A BGP peer is another BGP instance to which the DUT is in the Established state. (See RFC 1771.)

定义:BGP对等方是DUT处于已建立状态的另一个BGP实例。(见RFC 1771。)

Discussion: In the test scenarios for the methodology discussion that will follow this document, peers send BGP advertisements to the DUT and receive DUT-originated advertisements. We recommend that the peering relation be established before tests begin. It might also be interesting to measure the time required to reach the established state. This is a protocol-specific definition, not to be confused with another frequent usage, which refers to the business/economic definition for the exchange of routes without financial compensation. It is worth noting that a BGP peer, by this definition, is associated with a BGP peering session, and there may be more than one such active session on a router or on a tester. The peering sessions referred to here may exist between various classes of BGP routers (see Section 4.2).

讨论:在本文档后面的方法论讨论的测试场景中,对等方向DUT发送BGP广告,并接收源自DUT的广告。我们建议在测试开始之前建立对等关系。测量达到既定状态所需的时间也可能很有趣。这是一个特定于协议的定义,不能与另一个常见用法混淆,后者指的是在没有经济补偿的情况下交换路由的业务/经济定义。值得注意的是,根据该定义,BGP对等方与BGP对等会话相关联,并且在路由器或测试仪上可能有多个这样的活动会话。这里提到的对等会话可能存在于不同类别的BGP路由器之间(参见第4.2节)。

Measurement units: Number of BGP peers.

度量单位:BGP对等点的数量。

Issues:

问题:

See also:

另见:

3.11. BGP Neighbor
3.11. BGP邻居

Definition: A BGP neighbor is a device that can be configured as a BGP peer.

定义:BGP邻居是可以配置为BGP对等的设备。

Discussion:

讨论:

Measurement units:

计量单位:

Issues:

问题:

See also:

另见:

3.12. MinRouteAdvertisementInterval (MRAI)
3.12. MinRoutedVertisementerval(MRAI)

Definition: (Paraphrased from RFC 1771) The MRAI timer determines the minimum time between advertisements of routes to a particular destination (prefix) from a single BGP device. The timer is applied on a pre-prefix basis, although the timer is set on a per-BGP device basis.

定义:(从RFC 1771释义)MRAI定时器确定从单个BGP设备到特定目的地(前缀)的路由播发之间的最短时间。虽然计时器是基于每个BGP设备设置的,但计时器是基于前缀应用的。

Discussion: Given that a BGP instance may manage in excess of 100,000 routes, RFC 1771 allows for a degree of optimization in order to limit the number of timers needed. The MRAI does not apply to routes received from BGP speakers in the same AS or to explicit withdrawals. RFC 1771 also recommends that random jitter is applied to MRAI in an attempt to avoid synchronization effects between the BGP instances in a network. In this document, we define routing plane convergence by measuring from the time an NLRI is advertised to the DUT to the time it is advertised from the DUT. Clearly any delay inserted by the MRAI will have a significant effect on this measurement.

讨论:鉴于BGP实例可能管理超过100000条路由,RFC 1771允许一定程度的优化,以限制所需的计时器数量。MRAI不适用于从BGP演讲者处收到的与明确取款相同或相同的路由。RFC 1771还建议将随机抖动应用于MRAI,以避免网络中BGP实例之间的同步效应。在本文中,我们通过测量从NLRI播发到DUT的时间到从DUT播发到NLRI的时间来定义路由平面收敛。显然,MRAI插入的任何延迟将对该测量产生重大影响。

Measurement units: Seconds.

测量单位:秒。

Issues:

问题:

See also: NLRI, BGP Route.

另见:NLRI,BGP路线。

3.13. MinASOriginationInterval (MAOI)
3.13. MinASOriginationInterval(MAOI)

Definition: The MAOI specifies the minimum interval between advertisements of locally originated routes from this BGP instance.

定义:MAOI指定来自此BGP实例的本地源路由的播发之间的最小间隔。

Discussion: Random jitter is applied to MAOI in an attempt to avoid synchronization effects between BGP instances in a network.

讨论:随机抖动应用于MAOI,试图避免网络中BGP实例之间的同步效应。

Measurement units: Seconds.

测量单位:秒。

Issues: It is not known what, if any, relationship exists between the settings of MRAI and MAOI.

问题:不知道MRAI和MAOI设置之间存在什么关系(如果有)。

See also: MRAI, BGP Route.

另见:MRAI、BGP路由。

3.14. Active Route
3.14. 活动路线

Definition: Route for which there is a FIB entry corresponding to a RIB entry.

定义:具有对应于肋骨入口的FIB入口的管线。

Discussion:

讨论:

Measurement units: Number of routes.

测量单位:路由数。

Issues:

问题:

See also: RIB.

另见:肋骨。

3.15. Unique Route
3.15. 独特路线

Definition: A unique route is a prefix for which there is just one route instance across all Adj-Ribs-In.

定义:唯一管线是一个前缀,在该前缀中,所有Adj加强筋上只有一个管线实例。

Discussion:

讨论:

Measurement units: N.A.

计量单位:不适用。

Issues:

问题:

See also: Route, Route Instance.

另请参见:路由,路由实例。

3.16. Non-Unique Route
3.16. 非唯一路由

Definition: A non-unique route is a prefix for which there is at least one other route in a set including more than one Adj-RIB-In.

定义:非唯一管线是一个前缀,其中一个集合中至少有一个其他管线,其中包含多个Adj RIB in。

Discussion:

讨论:

Measurement units: N.A.

计量单位:不适用。

Issues:

问题:

See also: Route, Route Instance, Unique Active Route.

另请参见:路由、路由实例、唯一活动路由。

3.17. Route Instance
3.17. 路由实例

Definition: A route instance is one of several possible occurrences of a route for a particular prefix.

定义:路由实例是特定前缀的路由的多个可能出现的实例之一。

Discussion: When a router has multiple peers from which it accepts routes, routes to the same prefix may be received from several peers. This is then an example of multiple route instances. Each route instance is associated with a specific peer. The BGP algorithm that arbitrates between the available candidate route instances may reject a specific route instance due to local policy.

讨论:当路由器有多个接受路由的对等点时,可能会从多个对等点接收到指向同一前缀的路由。这是多个路由实例的示例。每个路由实例都与特定的对等方关联。在可用候选路由实例之间进行仲裁的BGP算法可能由于本地策略而拒绝特定路由实例。

Measurement units: Number of route instances.

度量单位:路由实例数。

Issues: The number of route instances in the Adj-RIB-In bases will vary based on the function to be performed by a router. An inter-provider border router, located in the default-free zone (see Section 4.1.4), will likely receive more route instances than a provider edge router, located closer to the end-users of the network.

问题:Adj RIB in bases中的路由实例数量将根据路由器执行的功能而变化。位于默认自由区(见第4.1.4节)的提供商间边界路由器可能比位于网络终端用户附近的提供商边缘路由器接收更多路由实例。

See also:

另见:

4. Constituent Elements of a Router or Network of Routers
4. 路由器或路由器网络的组成要素

Many terms included in this list of definitions were originally described in previous standards or papers. They are included here because of their pertinence to this discussion. Where relevant, reference is made to these sources. An effort has been made to keep this list complete with regard to the necessary concepts without over-definition.

本定义列表中的许多术语最初是在以前的标准或文件中描述的。之所以将它们包括在这里,是因为它们与本次讨论相关。如果相关,请参考这些来源。已努力使该清单在必要概念方面保持完整,而不过度定义。

4.1. Default Route, Default-Free Table, and Full Table
4.1. 默认路由、默认空闲表和完整表

An individual router's routing table may not necessarily contain a default route. Not having a default route, however, is not synonymous with having a full default-free table (DFT). Also, a router that has a full set of routes as in a DFT, but that also has a 'discard' rule for a default route would not be considered default free.

单个路由器的路由表不一定包含默认路由。但是,没有默认路由并不等同于拥有完整的默认空闲表(DFT)。此外,具有DFT中的完整路由集,但也具有默认路由的“放弃”规则的路由器将不会被视为无默认路由。

Note that in this section the references to number of routes are to routes installed in the loc-RIB, which are therefore unique routes, not route instances. Also note that the total number of route instances may be 4 to 10 times the number of routes.

请注意,在本节中,对路线数量的引用是指安装在loc RIB中的路线,因此这些路线是唯一的路线,而不是路线实例。还要注意,路由实例的总数可能是路由数量的4到10倍。

4.1.1. Default Route
4.1.1. 默认路由

Definition: A default route can match any destination address. If a router does not have a more specific route for a particular packet's destination address, it forwards this packet to the next hop in the default route entry, provided that its Forwarding Table (Forwarding Information Base, or FIB, contains one). The notation for a default route for IPv4 is 0.0.0.0/0 and for IPv6 it is 0:0:0:0:0:0:0:0 or ::/0.

定义:默认路由可以匹配任何目标地址。如果路由器对于特定数据包的目的地地址没有更具体的路由,它将该数据包转发到默认路由条目中的下一跳,前提是其转发表(转发信息库,或FIB,包含一个)。IPv4的默认路由表示法为0.0.0.0/0,IPv6的默认路由表示法为0:0:0:0:0:0:0或::/0。

Discussion:

讨论:

Measurement units: N.A.

计量单位:不适用。

Issues:

问题:

See also: Default-Free Routing Table, Route, Route Instance.

另请参见:默认自由路由表、路由、路由实例。

4.1.2. Default-Free Routing Table
4.1.2. 默认自由路由表

Definition: A default-free routing table has no default routes and is typically seen in routers in the core or top tier of routers in the network.

定义:默认自由路由表没有默认路由,通常出现在网络中路由器核心或顶层的路由器中。

Discussion: The term originates from the concept that routers at the core or top tier of the Internet will not be configured with a default route (Notation in IPv4 0.0.0.0/0 and in IPv6 0:0:0:0:0:0:0:0 or ::/0). Thus they will forward every packet to a specific next hop based on the longest match between the destination IP address and the routes in the forwarding table.

讨论:该术语源自这样一个概念,即互联网核心层或顶层的路由器将不会配置默认路由(IPv4 0.0.0.0/0和IPv6 0:0:0:0:0:0或:/0中的符号)。因此,他们将根据目标IP地址和转发表中的路由之间的最长匹配,将每个数据包转发到特定的下一跳。

Default-free routing table size is commonly used as an indicator of the magnitude of reachable Internet address space. However, default-free routing tables may also include routes internal to the router's AS.

默认自由路由表大小通常用作可访问Internet地址空间大小的指标。但是,默认自由路由表也可能包括路由器AS内部的路由。

Measurement units: The number of routes.

测量单位:路由数。

See also: Full Default-Free Table, Default Route.

另请参见:完整默认空闲表、默认路由。

4.1.3. Full Default-Free Table
4.1.3. 完全默认自由表

Definition: A full default-free table is the union of all sets of BGP routes taken from all the default-free BGP routing tables collectively announced by the complete set of autonomous systems making up the public Internet. Due to the dynamic nature of the Internet, the exact size and composition of this table may vary slightly depending on where and when it is observed.

定义:完全默认自由表是由组成公共互联网的全套自治系统共同公布的所有默认自由BGP路由表中的所有BGP路由集的联合。由于互联网的动态特性,此表的确切大小和组成可能会因观察时间和地点的不同而略有不同。

Discussion: It is generally accepted that a full table, in this usage, does not contain the infrastructure routes or individual sub-aggregates of routes that are otherwise aggregated by the provider before announcement to other autonomous systems.

讨论:一般认为,在这种用法中,完整表不包含基础设施路由或路由的单个子聚合,这些路由在向其他自治系统发布之前由提供商聚合。

Measurement units: Number of routes.

测量单位:路由数。

Issues: The full default-free routing table is not the same as the union of all reachable unicast addresses. The table simply does not

问题:完整的默认空闲路由表与所有可访问单播地址的并集不同。这张桌子根本没有

contain the default prefix (0/0) and does contain the union of all sets of BGP routes from default-free BGP routing tables.

包含默认前缀(0/0),并包含来自默认自由BGP路由表的所有BGP路由集的并集。

See also: Routes, Route Instances, Default Route.

另请参见:管线、管线实例、默认管线。

4.1.4. Default-Free Zone
4.1.4. 默认自由区

Definition: The default-free zone is the part of the Internet backbone that does not have a default route.

定义:默认自由区是Internet主干网中没有默认路由的部分。

Discussion:

讨论:

Measurement units:

计量单位:

Issues:

问题:

See also: Default Route.

另请参见:默认路由。

4.1.5. Full Provider-Internal Table
4.1.5. 完整提供程序内部表

Definition: A full provider-internal table is a superset of the full routing table that contains infrastructure and non-aggregated routes.

定义:完整提供程序内部表是包含基础结构和非聚合路由的完整路由表的超集。

Discussion: Experience has shown that this table might contain 1.3 to 1.5 times the number of routes in the externally visible full table. Tables of this size, therefore, are a real-world requirement for key internal provider routers.

讨论:经验表明,此表可能包含外部可见完整表中路由数的1.3到1.5倍。因此,这种大小的表是关键内部提供者路由器的现实需求。

Measurement units: Number of routes.

测量单位:路由数。

Issues:

问题:

See also: Routes, Route Instances, Default Route.

另请参见:管线、管线实例、默认管线。

4.2. Classes of BGP-Speaking Routers
4.2. 讲BGP的路由器类别

A given router may perform more than one of the following functions, based on its logical location in the network.

给定的路由器可以根据其在网络中的逻辑位置执行以下功能中的一个以上。

4.2.1. Provider Edge Router
4.2.1. 提供者边缘路由器

Definition: A provider edge router is a router at the edge of a provider's network that speaks eBGP to a BGP speaker in another AS.

定义:提供商边缘路由器是位于提供商网络边缘的路由器,该路由器将eBGP与另一AS中的BGP扬声器通话。

Discussion: The traffic that transits this router may be destined to or may originate from non-adjacent autonomous systems. In particular, the MED values used in the Provider Edge Router would not be visible in the non-adjacent autonomous systems. Such a router will always speak eBGP and may speak iBGP.

讨论:通过该路由器的通信量可能是目的地,也可能来自非相邻的自治系统。特别是,提供商边缘路由器中使用的MED值在非相邻自治系统中不可见。这样的路由器总是讲eBGP,也可能讲iBGP。

Measurement units:

计量单位:

Issues:

问题:

See also:

另见:

4.2.2. Subscriber Edge Router
4.2.2. 用户边缘路由器

Definition: A subscriber edge router is router at the edge of the subscriber's network that speaks eBGP to its provider's AS(s).

定义:订户边缘路由器是位于订户网络边缘的路由器,它将eBGP与其提供商的AS进行通信。

Discussion: The router belongs to an end user organization that may be multi-homed, and that carries traffic only to and from that end user AS. Such a router will always speak eBGP and may speak iBGP.

讨论:路由器属于一个终端用户组织,该组织可能是多宿的,并且只向该终端用户发送通信量。这样的路由器总是讲eBGP,也可能讲iBGP。

Measurement units:

计量单位:

Issues: This definition of an enterprise border router (which is what most Subscriber Edge Routers are) is practical rather than rigorous. It is meant to draw attention to the reality that many enterprises may need a BGP speaker that advertises their own routes and accepts either default alone or partial routes. In such cases, they may be interested in benchmarks that use a partial routing table, to see whether a smaller control plane processor will meet their needs.

问题:企业边界路由器(大多数用户边缘路由器)的定义是实用的,而不是严格的。这是为了提醒人们注意这样一个现实,即许多企业可能需要一位BGP演讲者来宣传自己的路线,并接受单独的默认路线或部分路线。在这种情况下,他们可能会对使用部分路由表的基准测试感兴趣,以查看较小的控制平面处理器是否能满足他们的需求。

See also:

另见:

4.2.3. Inter-provider Border Router
4.2.3. 供应商间边界路由器

Definition: An inter-provider border router is a BGP speaking router that maintains BGP sessions with other BGP speaking routers in other providers' ASes.

定义:提供商间边界路由器是讲BGP的路由器,它与其他提供商的ASE中讲BGP的路由器保持BGP会话。

Discussion: Traffic transiting this router may be originated in or destined for another AS that has no direct connectivity with this provider's AS. Such a router will always speak eBGP and may speak iBGP.

讨论:通过此路由器的流量可能来自或目的地为与此提供商的AS没有直接连接的其他AS。这样的路由器总是讲eBGP,也可能讲iBGP。

Measurement units:

计量单位:

Issues:

问题:

See also:

另见:

4.2.4. Core Router
4.2.4. 核心路由器

Definition: An core router is a provider router internal to the provider's net, speaking iBGP to that provider's edge routers, other intra-provider core routers, or the provider's inter-provider border routers.

定义:核心路由器是提供商网络内部的提供商路由器,与该提供商的边缘路由器、其他提供商内部核心路由器或提供商的提供商间边界路由器进行iBGP对话。

Discussion: Such a router will always speak iBGP and may speak eBGP.

讨论:这样的路由器总是说iBGP,也可能说eBGP。

Measurement units:

计量单位:

Issues: By this definition, the DUTs that are eBGP routers aren't core routers.

问题:根据这个定义,作为eBGP路由器的DUT不是核心路由器。

See also:

另见:

5. Characterization of Sets of Update Messages
5. 更新消息集的特征化

This section contains a sequence of definitions that build up to the definition of an update train. The packet train concept was originally introduced by Jain and Routhier [PKTTRAIN]. It is here adapted to refer to a train of packets of interest in BGP performance testing.

本节包含一系列定义,这些定义构成了更新序列的定义。分组列车概念最初由Jain和Routhier[PKTTRAIN]提出。这里它适用于指BGP性能测试中感兴趣的分组序列。

This is a formalization of the sort of test stimulus that is expected as input to a DUT running BGP. This data could be a well-characterized, ordered, and timed set of hand-crafted BGP UPDATE packets. It could just as well be a set of BGP UPDATE packets that have been captured from a live router.

这是一种测试刺激的形式化,它被期望作为运行BGP的DUT的输入。这些数据可以是手工制作的BGP更新数据包的一组特征良好、有序且定时的数据。它也可以是一组从实时路由器捕获的BGP更新数据包。

Characterization of route mixtures and update trains is an open area of research. The particular question of interest for this work is the identification of suitable update trains, modeled on or taken from live traces that reflect realistic sequences of UPDATEs and their contents.

路线混合和更新列车的特征描述是一个开放的研究领域。这项工作特别关注的问题是确定合适的更新序列,以反映真实更新序列及其内容的实时跟踪为模型或从中获取。

5.1. Route Packing
5.1. 路线包装

Definition: Route packing is the number of route prefixes accommodated in a single Routing Protocol UPDATE Message, either as updates (additions or modifications) or as withdrawals.

定义:Route packing是单个路由协议更新消息中包含的路由前缀数,可以作为更新(添加或修改)或提取。

Discussion: In general, a routing protocol update may contain more than one prefix. In BGP, a single UPDATE may contain two sets of multiple network prefixes: one set of additions and updates with identical attributes (the NLRI) and one set of unfeasible routes to be withdrawn.

讨论:通常,路由协议更新可能包含多个前缀。在BGP中,一次更新可能包含两组多个网络前缀:一组具有相同属性的添加和更新(NLRI)和一组要撤销的不可行路由。

Measurement units:

计量单位:

Number of prefixes.

前缀的数目。

Issues:

问题:

See also: Route, BGP Route, Route Instance, Update Train, NLRI.

另请参见:路线、BGP路线、路线实例、更新列车、NLRI。

5.2. Route Mixture
5.2. 路线混合料

Definition: A route mixture is the demographics of a set of routes.

定义:路线混合是一组路线的人口统计信息。

Discussion: A route mixture is the input data for the benchmark. The particular route mixture used as input must be selected to suit the question being asked of the benchmark. Data containing simple route mixtures might be suitable to test the performance limits of the BGP device. Using live data or input that simulates live data will improve understanding of how the BGP device will operate in a live network. The data for this kind of test must be route mixtures that model the patterns of arriving control traffic in the live Internet. To accomplish this kind of modeling, it is necessary to identify the key parameters that characterize a live Internet route mixture. The parameters and how they interact is an open research problem. However, we identify the following as affecting the route mixture:

讨论:路线混合是基准的输入数据。必须选择用作输入的特定路线混合料,以适合对基准提出的问题。包含简单路由混合的数据可能适合测试BGP设备的性能限制。使用实时数据或模拟实时数据的输入将提高对BGP设备如何在实时网络中运行的理解。此类测试的数据必须是模拟实时互联网中到达控制流量模式的路由混合。为了完成这种建模,有必要确定表征实时互联网路由混合的关键参数。参数及其相互作用是一个开放的研究问题。但是,我们认为以下因素会影响路线混合:

* Path length distribution

* 路径长度分布

* Attribute distribution

* 属性分布

* Prefix length distribution

* 前缀长度分布

* Packet packing

* 包装

* Probability density function of inter-arrival times of UPDATES

* 更新到达时间间隔的概率密度函数

Each of the items above is more complex than a single number. For example, one could consider the distribution of prefixes by AS or by length.

以上每一项都比单个数字更复杂。例如,可以考虑前缀的按As或按长度分布。

Measurement units: Probability density functions.

测量单位:概率密度函数。

Issues:

问题:

See also: NLRI, RIB.

另见:NLRI,RIB。

5.3. Update Train
5.3. 更新列车

Definition: An update train is a set of Routing Protocol UPDATE messages sent by a router to a BGP peer.

定义:更新序列是路由器向BGP对等方发送的一组路由协议更新消息。

Discussion: The arrival pattern of UPDATEs can be influenced by many things, including TCP parameters, hold-down timers, upstream processing, a peer coming up, or multiple peers sending at the same time. Network conditions such as a local or remote peer flapping a link can also affect the arrival pattern.

讨论:更新的到达模式可能受到许多因素的影响,包括TCP参数、保持计时器、上游处理、一个对等点出现或多个对等点同时发送。网络条件(如本地或远程对等点拍打链路)也会影响到达模式。

Measurement units: Probability density function for the inter-arrival times of UPDATE packets in the train.

测量单位:列车内更新包到达时间的概率密度函数。

Issues: Characterizing the profiles of real-world UPDATE trains is a matter for future research. In order to generate realistic UPDATE trains as test stimuli, a formal mathematical scheme or a proven heuristic is needed to drive the selection of prefixes. Whatever mechanism is selected, it must generate update trains that have similar characteristics to those measured in live networks.

问题:描述真实世界更新序列的特征是未来研究的问题。为了生成真实的更新序列作为测试刺激,需要一个正式的数学方案或经验证的启发式方法来驱动前缀的选择。无论选择哪种机制,它都必须生成具有与在实时网络中测量的特性相似的更新序列。

See also: Route Mixture, MRAI, MAOI.

另见:路线混合、MRAI、MAOI。

5.4. Randomness in Update Trains
5.4. 更新序列的随机性

As we have seen from the previous sections, an update train used as a test stimulus has a considerable number of parameters that can be varied, to a greater or lesser extent, randomly and independently.

正如我们从前面的章节中所看到的,用作测试刺激的更新序列具有大量的参数,这些参数可以在较大或较小的程度上随机和独立地变化。

A random update train will contain a route mixture randomized across:

随机更新列车将包含一条随机穿过以下区域的路线混合物:

* NLRIs

* NLRIs

* updates and withdrawals

* 更新和撤回

* prefixes

* 前缀

* inter-arrival times of the UPDATEs and possibly across other variables.

* 更新的到达时间间隔,可能跨越其他变量。

This is intended to simulate the unpredictable asynchronous nature of the network, whereby UPDATE packets may have arbitrary contents and be delivered at random times.

这是为了模拟网络不可预测的异步性质,更新包可能具有任意内容,并且在随机时间交付。

It is important that the data set be randomized sufficiently to avoid favoring one vendor's implementation over another's. Specifically, the distribution of prefixes could be structured to favor the internal organization of the routes in a particular vendor's databases. This is to be avoided.

重要的是,数据集应充分随机化,以避免一个供应商的实施优于另一个供应商的实施。具体地说,前缀的分布可以结构化,以便有利于特定供应商数据库中路由的内部组织。这是必须避免的。

5.5. Route Flap
5.5. 路由皮瓣

Definition: A route flap is a change of state (withdrawal, announcement, attribute change) for a route.

定义:路线翻盖是路线的状态更改(撤回、公告、属性更改)。

Discussion: Route flapping can be considered a special and pathological case of update trains. A practical interpretation of what may be considered excessively rapid is the RIPE 229 [RIPE229], which contains current guidelines on flap-damping parameters.

讨论:路线摆动可被视为更新列车的一种特殊病理情况。对于可能被认为速度过快的问题,一个实用的解释是成熟的229[RIPE229],其中包含关于襟翼阻尼参数的现行指南。

Measurement units: Flapping events per unit time.

测量单位:单位时间内的拍打事件。

Issues: Specific Flap events can be found in Section 6.1. A bench-marker SHOULD use a mixture of different route change events in testing.

问题:具体襟翼事件见第6.1节。基准点标记器应在测试中混合使用不同的路线变化事件。

See also: Route Change Events, Flap Damping, Packet Train

另见:路线变更事件、襟翼阻尼、分组列车

6. Route Changes and Convergence
6. 路线改变和衔接

The following two definitions are central to the benchmarking of external routing convergence and are therefore singled out for more extensive discussion.

以下两个定义是外部路由收敛基准测试的核心,因此被挑选出来进行更广泛的讨论。

6.1. Route Change Events
6.1. 路线更改事件

A taxonomy characterizing routing information changes seen in operational networks is proposed in RIPE-37 [RIPE37] and Labovitz et al [INSTBLTY]. These papers describe BGP protocol-centric events and event sequences in the course of an analysis of network behavior. The terminology in the two papers categorizes similar but slightly different behaviors with some overlap. We would like to apply these taxonomies to categorize the tests under definition where possible, because these tests must tie in to phenomena that arise in actual networks. We avail ourselves of, or may extend, this terminology as necessary for this purpose.

RIME-37[RIPE37]和Labovitz等人[INSTBLTY]提出了一种表征运营网络中路由信息变化的分类法。这些论文在分析网络行为的过程中描述了以BGP协议为中心的事件和事件序列。这两篇论文中的术语对相似但略有不同的行为进行了分类,但有些重叠。我们希望在可能的情况下应用这些分类法对定义下的测试进行分类,因为这些测试必须与实际网络中出现的现象相关联。为此,我们可以使用或扩展此术语。

A route can be changed implicitly by replacing it with another route or explicitly by withdrawal followed by the introduction of a new route. In either case, the change may be an actual change, no change, or a duplicate. The notation and definition of individual categorizable route change events is adopted from [INSTBLTY] and given below.

可以通过使用另一个路由替换它来隐式地更改路由,或者通过在引入新路由之后退出来显式地更改路由。在任何一种情况下,变更可能是实际变更、无变更或重复。单个可分类路线变更事件的符号和定义采用[INSTBLTY],如下所示。

1. AADiff: Implicit withdrawal of a route and replacement by a route different in some path attribute.

1. AADiff:隐式撤回路由,并替换为某些路径属性中不同的路由。

2. AADup: Implicit withdrawal of a route and replacement by route that is identical in all path attributes.

2. AADup:隐式撤回路由并替换所有路径属性中相同的路由。

3. WADiff: Explicit withdrawal of a route and replacement by a different route.

3. WADiff:明确撤回一条路线并用另一条路线替换。

4. WADup: Explicit withdrawal of a route and replacement by a route that is identical in all path attributes.

4. WADup:显式撤回路由并替换为所有路径属性相同的路由。

To apply this taxonomy in the benchmarking context, we need terms to describe the sequence of events from the update train perspective, as listed above, and event indications in the time domain in order to measure activity from the perspective of the DUT. With this in mind, we incorporate and extend the definitions of [INSTBLTY] to the following:

为了在基准测试环境中应用这种分类法,我们需要从更新序列的角度描述事件的顺序,如上所列,以及时域中的事件指示,以便从DUT的角度测量活动。考虑到这一点,我们将[INSTBLTY]的定义合并并扩展到以下内容:

1. Tup (TDx): Route advertised to the DUT by Test Device x

1. Tup(TDx):由测试设备x播发到DUT的路由

2. Tdown(TDx): Route being withdrawn by Device x

2. Tdown(TDx):设备x撤回的路由

3. Tupinit(TDx): The initial announcement of a route to a unique prefix

3. Tupinit(TDx):指向唯一前缀的路由的初始公告

4. TWF(TDx): Route fail over after an explicit withdrawal.

4. TWF(TDx):显式退出后的路由故障转移。

But we need to take this a step further. Each of these events can involve a single route, a "short" packet train, or a "full" routing table. We further extend the notation to indicate how many routes are conveyed by the events above:

但我们需要更进一步。这些事件中的每一个都可能涉及单个路由、“短”数据包序列或“完整”路由表。我们进一步扩展了符号,以指示上述事件传递了多少条路线:

1. Tup(1,TDx) means Device x sends 1 route

1. Tup(1,TDx)表示设备x发送1条路由

2. Tup(S,TDx) means Device x sends a train, S, of routes

2. Tup(S,TDx)表示设备x发送一列(S)路线

3. Tup(DFT,TDx) means Device x sends an approximation of a full default-free table.

3. Tup(DFT,TDx)意味着设备x发送一个完整的默认自由表的近似值。

The basic criterion for selecting a "better" route is the final tiebreaker defined in RFC 1771, the router ID. As a consequence, this memorandum uses the following descriptor events, which are routes selected by the BGP selection process rather than simple updates:

选择“更好”路由的基本标准是RFC 1771(路由器ID)中定义的最终分接器。因此,本备忘录使用以下描述符事件,这些事件是BGP选择过程选择的路由,而不是简单的更新:

1. Tbest -- The current best path.

1. Tbest——当前的最佳路径。

2. Tbetter -- Advertise a path that is better than Tbest.

2. Tbetter——宣传一条比Tbest更好的路径。

3. Tworse -- Advertise a path that is worse than Tbest.

3. Tworse——宣传一条比Tbest更糟糕的路径。

6.2. Device Convergence in the Control Plane
6.2. 控制平面中的设备会聚

Definition: A routing device is said to have converged at the point in time when the DUT has performed all actions in the control plane needed to react to changes in topology in the context of the test condition.

定义:当DUT已在控制平面内执行所有动作,以对测试条件下的拓扑变化作出反应时,称路由设备已在时间点聚合。

Discussion: For example, when considering BGP convergence, the convergence resulting from a change that alters the best route instance for a single prefix at a router would be deemed to have occurred when this route is advertised to its downstream peers. By way of contrast, OSPF convergence concludes when SPF calculations have been performed and the required link states are advertised onward. The convergence process, in general, can be subdivided into three distinct phases:

讨论:例如,当考虑BGP收敛时,由于改变路由器上单个前缀的最佳路由实例而导致的收敛将被视为在向其下游对等方播发该路由时发生。作为对比,OSPF收敛在SPF计算完成且所需链路状态向前公布时结束。总体而言,收敛过程可分为三个不同的阶段:

* convergence across the entire Internet,

* 融合整个互联网,

* convergence within an Autonomous System,

* 在一个自治系统内趋同,

* convergence with respect to a single device.

* 关于单个设备的收敛。

Convergence with respect to a single device can be

关于单个设备的收敛可以是

* convergence with regard to data forwarding process(es)

* 数据转发过程的收敛性(es)

* convergence with regard to the routing process(es), the focus of this document.

* 关于路由过程的收敛,这是本文件的重点。

It is the latter that we describe herein and in the methodology documents. Because we are trying to benchmark the routing protocol performance, which is only a part of the device overall, this definition is intended (as far as is possible) to exclude any

我们在本文和方法文件中描述的是后者。因为我们试图对路由协议性能进行基准测试,而路由协议性能只是整个设备的一部分,所以此定义旨在(尽可能)排除任何

additional time needed to download and install the forwarding information base in the data plane. This definition is usable for different families of protocols.

下载并在数据平面中安装转发信息库所需的额外时间。此定义可用于不同的协议系列。

It is of key importance to benchmark the performance of each phase of convergence separately before proceeding to a composite characterization of routing convergence, where implementation-specific dependencies are allowed to interact. Care also needs to be taken to ensure that the convergence time is not influenced by policy processing on downstream peers. The time resolution needed to measure the device convergence depends to some extent on the types of the interfaces on the router. For modern routers with gigabit or faster interfaces, an individual UPDATE may be processed and re-advertised in very much less than a millisecond so that time measurements must be made to a resolution of hundreds to tens of microseconds or better.

在进行路由收敛的综合表征之前,分别对每个收敛阶段的性能进行基准测试是非常重要的,在这种情况下,允许特定于实现的依赖性进行交互。还需要注意确保收敛时间不受下游对等方的策略处理的影响。测量设备收敛所需的时间分辨率在某种程度上取决于路由器上接口的类型。对于具有千兆或更快接口的现代路由器,单个更新可能在非常短的一毫秒内被处理和重新发布,因此时间测量必须达到数百到几十微秒或更高的分辨率。

Measurement units:

计量单位:

Time period.

时间段。

Issues:

问题:

See also:

另见:

7. BGP Operation Events
7. BGP操作事件

The BGP process(es) in a device might restart because operator intervention or a power failure caused a complete shutdown. In this case, a hard reset is needed. A peering session could be lost, for example, because of action on the part of the peer or a dropped TCP session. A device can reestablish its peers and re-advertise all relevant routes in a hard reset. However, if a peer is lost, but the BGP process has not failed, BGP has mechanisms for a "soft reset."

由于操作员干预或电源故障导致完全关机,设备中的BGP进程可能会重新启动。在这种情况下,需要硬复位。对等会话可能会丢失,例如,由于对等方的操作或丢弃的TCP会话。设备可以在硬重置中重新建立其对等点并重新公布所有相关路由。但是,如果对等机丢失,但BGP进程没有失败,则BGP具有“软重置”机制

7.1. Hard Reset
7.1. 硬复位

Definition: An event that triggers a complete re-initialization of the routing tables on one or more BGP sessions, resulting in exchange of a full routing table on one or more links to the router.

定义:在一个或多个BGP会话上触发路由表完全重新初始化的事件,导致在到路由器的一个或多个链路上交换完整路由表。

Discussion:

讨论:

Measurement units: N.A.

计量单位:不适用。

Issues:

问题:

See also:

另见:

7.2. Soft Reset
7.2. 软复位

Definition: A soft reset is performed on a per-neighbor basis; it does not clear the BGP session while re-establishing the peering relation and does not stop the flow of traffic.

定义:在每个邻居的基础上执行软重置;它不会在重新建立对等关系时清除BGP会话,也不会停止通信流。

Discussion: There are two methods of performing a soft reset: (1) graceful restart [GRMBGP], wherein the BGP device that has lost a peer continues to forward traffic for a period of time before tearing down the peer's routes and (2) soft refresh [RFC2918], wherein a BGP device can request a peer's Adj-RIB-Out.

讨论:有两种执行软重置的方法:(1)正常重启[GRMBGP],其中失去对等方的BGP设备在中断对等方的路由之前继续转发流量一段时间;(2)软刷新[RFC2918],其中BGP设备可以请求对等方的Adj退出。

Measurement units: N.A.

计量单位:不适用。

Issues:

问题:

See also:

另见:

8. Factors That Impact the Performance of the Convergence Process
8. 影响收敛过程性能的因素

Although this is not a complete list, all the items discussed below have a significant effect on BGP convergence. Not all of them can be addressed in the baseline measurements described in this document.

虽然这不是一个完整的列表,但下面讨论的所有项目对BGP收敛都有重大影响。并非所有这些问题都可以在本文件中描述的基线测量中解决。

8.1. General Factors Affecting Device Convergence
8.1. 影响设备融合的一般因素

These factors are conditions of testing external to the router Device Under Test (DUT).

这些因素是被测路由器设备(DUT)外部的测试条件。

8.1.1. Number of Peers
8.1.1. 对等点的数量

As the number of peers increases, the BGP route selection algorithm is increasingly exercised. In addition, the phasing and frequency of updates from the various peers will have an increasingly marked effect on the convergence process on a router as the number of peers grows, depending on the quantity of updates generated by each additional peer. Increasing the number of peers also increases the processing workload for TCP and BGP keepalives.

随着对等点数量的增加,BGP路由选择算法的应用也越来越多。此外,随着对等点数量的增加,来自不同对等点的更新的阶段和频率将对路由器上的收敛过程产生越来越显著的影响,这取决于每个额外对等点生成的更新数量。增加对等点的数量也会增加TCP和BGP保留的处理工作量。

8.1.2. Number of Routes per Peer
8.1.2. 每个对等方的路由数

The number of routes per BGP peer is an obvious stressor to the convergence process. The number and relative proportion of multiple route instances and distinct routes being added or withdrawn by each peer will affect the convergence process, as will the mix of overlapping route instances and IGP routes.

每个BGP对等点的路由数是收敛过程的一个明显的压力源。每个对等方添加或删除的多个路由实例和不同路由的数量和相对比例将影响收敛过程,重叠路由实例和IGP路由的混合也将影响收敛过程。

8.1.3. Policy Processing/Reconfiguration
8.1.3. 策略处理/重新配置

The number of routes and attributes being filtered and set as a fraction of the target route table size is another parameter that will affect BGP convergence.

被过滤并设置为目标路由表大小一部分的路由和属性的数量是影响BGP收敛的另一个参数。

The following are extreme examples:

以下是极端的例子:

o Minimal policy: receive all, send all.

o 最小策略:全部接收,全部发送。

o Extensive policy: up to 100% of the total routes have applicable policy.

o 广泛政策:多达100%的总路线具有适用的政策。

8.1.4. Interactions with Other Protocols
8.1.4. 与其他协议的交互

There are interactions in the form of precedence, synchronization, duplication, and the addition of timers and route selection criteria. Ultimately, understanding BGP4 convergence must include an understanding of the interactions with both the IGPs and the protocols associated with the physical media, such as Ethernet, SONET, and DWDM.

存在以优先、同步、复制以及添加计时器和路由选择标准的形式的交互。最终,理解BGP4融合必须包括理解与IGP以及与物理介质(如以太网、SONET和DWDM)相关的协议的交互。

8.1.5. Flap Damping
8.1.5. 襟翼阻尼

A router can use flap damping to respond to route flapping. Use of flap damping is not mandatory, so the decision to enable the feature, and to change parameters associated with it, can be considered a matter of routing policy.

路由器可以使用襟翼阻尼来响应路由抖动。襟翼阻尼的使用不是强制性的,因此启用该功能以及更改与之相关的参数的决定可以视为路由策略的问题。

The timers are defined by RFC 2439 [RFC2439] and discussed in RIPE-229 [RIPE229]. If this feature is in effect, it requires that the device keep additional state to carry out the damping, which can have a direct impact on the control plane due to increased processing. In addition, flap damping may delay the arrival of real changes in a route and affect convergence times.

计时器由RFC 2439[RFC2439]定义,并在RIPE-229[RIPE229]中讨论。如果此功能有效,则要求设备保持附加状态以执行阻尼,由于增加了处理,这可能会对控制平面产生直接影响。此外,襟翼阻尼可能会延迟路线中实际变化的到达,并影响收敛时间。

8.1.6. Churn
8.1.6. 搅动

In theory, a BGP device could receive a set of updates that completely define the Internet and could remain in a steady state, only sending appropriate keepalives. In practice, the Internet will always be changing.

理论上,BGP设备可以接收到一组完全定义互联网的更新,并且可以保持稳定状态,只发送适当的keepalive。实际上,互联网总是在变化。

Churn refers to control-plane processor activity caused by announcements received and sent by the router. It does not include keepalives and TCP processing.

搅动是指由路由器接收和发送的通知引起的控制平面处理器活动。它不包括keepalives和TCP处理。

Churn is caused by both normal and pathological events. For example, if an interface of the local router goes down and the associated prefix is withdrawn, that withdrawal is a normal activity, although it contributes to churn. If the local device receives a withdrawal of a route it already advertises, or an announcement of a route it did not previously know, and it re-advertises this information, these are normal constituents of churn. Routine updates can range from single announcements or withdrawals, to announcements of an entire default-free table. The latter is completely reasonable as an initialization condition.

搅动是由正常和病理事件引起的。例如,如果本地路由器的一个接口宕机,并且相关的前缀被撤销,那么撤销是一个正常的活动,尽管它会导致客户流失。如果本地设备接收到它已经播发的路由的撤销,或者它之前不知道的路由的公告,并且它重新播发了该信息,这些是搅动的正常组成部分。例行更新的范围可以是单个通知或取款,也可以是整个默认自由表的通知。后者作为初始化条件是完全合理的。

Flapping routes are a pathological contributor to churn, as is MED oscillation [RFC3345]. The goal of flap damping is to reduce the contribution of flapping to churn.

扑动路径是搅动的病理因素,MED振荡也是如此[RFC3345]。襟翼阻尼的目的是减少襟翼对搅动的影响。

The effect of churn on overall convergence depends on the processing power available to the control plane, and on whether the same processor(s) are used for forwarding and control.

搅动对整体收敛的影响取决于控制平面可用的处理能力,以及是否使用相同的处理器进行转发和控制。

8.2. Implementation-Specific and Other Factors Affecting BGP Convergence

8.2. 影响BGP融合的具体实施因素和其他因素

These factors are conditions of testing internal to the Device Under Test (DUT), although they may affect its interactions with test devices.

这些因素是被测设备(DUT)内部的测试条件,尽管它们可能会影响其与测试设备的交互作用。

8.2.1. Forwarded Traffic
8.2.1. 转发流量

The presence of actual traffic in the device may stress the control path in some fashion if both the offered load (due to data) and the control traffic (FIB updates and downloads as a consequence of flaps) are excessive. The addition of data traffic presents a more accurate reflection of realistic operating scenarios than would be presented if only control traffic were present.

如果提供的负载(由于数据)和控制流量(由于襟翼而导致的FIB更新和下载)过多,则设备中实际流量的存在可能以某种方式对控制路径施加压力。与仅存在控制流量相比,数据流量的添加更准确地反映了实际操作场景。

8.2.2. Timers
8.2.2. 计时器

Settings of delay and hold-down timers at the link level, as well as for BGP4, can introduce or ameliorate delays. As part of a test report, all relevant timers MUST be reported if they use non-default values.

在链路级别以及BGP4上设置延迟和保持定时器可以引入或改善延迟。作为测试报告的一部分,如果使用非默认值,则必须报告所有相关计时器。

8.2.3. TCP Parameters Underlying BGP Transport
8.2.3. BGP传输的TCP参数

Because all BGP traffic and interactions occur over TCP, all relevant parameters characterizing the TCP sessions MUST be provided; e.g., slow start, max window size, maximum segment size, or timers.

由于所有BGP通信和交互都发生在TCP上,因此必须提供表征TCP会话的所有相关参数;e、 例如,慢速启动、最大窗口大小、最大段大小或计时器。

8.2.4. Authentication
8.2.4. 认证

Authentication in BGP is currently done using the TCP MD5 Signature Option [RFC2385]. The processing of the MD5 hash, particularly in devices with a large number of BGP peers and a large amount of update traffic, can have an impact on the control plane of the device.

BGP中的身份验证当前使用TCP MD5签名选项[RFC2385]完成。MD5散列的处理,特别是在具有大量BGP对等点和大量更新通信量的设备中,可能会对设备的控制平面产生影响。

9. Security Considerations
9. 安全考虑

The document explicitly considers authentication as a performance-affecting feature, but does not consider the overall security of the routing system.

该文档明确地将认证视为性能影响特征,但不考虑路由系统的整体安全性。

10. Acknowledgements
10. 致谢

Thanks to Francis Ovenden for review and Abha Ahuja for encouragement. Much appreciation to Jeff Haas, Matt Richardson, and Shane Wright at Nexthop for comments and input. Debby Stopp and Nick Ambrose contributed the concept of route packing.

感谢弗朗西斯·奥文登(Francis Ovenden)的回顾和阿哈·阿胡贾(Abha Ahuja)的鼓励。非常感谢Nexthop的杰夫·哈斯、马特·理查森和肖恩·赖特的评论和意见。Debby Stopp和Nick Ambrose提出了路线包装的概念。

Alvaro Retana was a key member of the team that developed this document, and made significant technical contributions regarding route mixes. The team thanks him and regards him as a co-author in spirit.

Alvaro Retana是编制本文件团队的关键成员,并在路线混合方面做出了重大技术贡献。团队感谢他,并将他视为精神上的合著者。

11. References
11. 工具书类
11.1. Normative References
11.1. 规范性引用文件

[RFC1771] Rekhter, Y. and T. Li, "A Border Gateway Protocol 4 (BGP-4)", RFC 1771, March 1995.

[RFC1771]Rekhter,Y.和T.Li,“边境网关协议4(BGP-4)”,RFC 17711995年3月。

[RFC2439] Villamizar, C., Chandra, R., and R. Govindan, "BGP Route Flap Damping", RFC 2439, November 1998.

[RFC2439]Villamizar,C.,Chandra,R.,和R.Govindan,“BGP路线襟翼阻尼”,RFC 2439,1998年11月。

[RFC1812] Baker, F., "Requirements for IP Version 4 Routers", RFC 1812, June 1995.

[RFC1812]Baker,F.,“IP版本4路由器的要求”,RFC1812,1995年6月。

[RIPE37] Ahuja, A., Jahanian, F., Bose, A., and C. Labovitz, "An Experimental Study of Delayed Internet Routing Convergence", RIPE-37 Presentation to Routing WG, November 2000, <http://www.ripe.net/ripe/meetings/archive/ ripe-37/presentations/RIPE-37-convergence/> . [INSTBLTY] Labovitz, C., Malan, G., and F. Jahanian, "Origins of Internet Routing Instability", Infocom 99, August 1999.

[RIPE37]Ahuja,A.,Jahanian,F.,Bose,A.,和C.Labovitz,“延迟互联网路由收敛的实验研究”,RIME-37提交给路由工作组,2000年11月<http://www.ripe.net/ripe/meetings/archive/ CRIPE-37/演示/CRIPE-37-convergence/>。[INSTBLTY]Labovitz,C.,Malan,G.,和F.Jahanian,“互联网路由不稳定性的起源”,Infocom 99,1999年8月。

[RFC2622] Alaettinoglu, C., Bates, T., Gerich, E., Karrenberg, D., Meyer, D., Terpstra, M., and C. Villamizar, "Routing Policy Specification Language (RPSL)", RFC 2280, January 1998.

[RFC2622]Alaettinoglu,C.,Bates,T.,Gerich,E.,Karrenberg,D.,Meyer,D.,Terpstra,M.,和C.Villamizar,“路由策略规范语言(RPSL)”,RFC 2280,1998年1月。

[RIPE229] Panigl, C., Schmitz, J., Smith, P., and C. Vistoli, "RIPE Routing-WG Recommendation for coordinated route-flap damping parameters, version 2", RIPE 229, October 2001.

[RIPE229]Panigl,C.,Schmitz,J.,Smith,P.,和C.Vistoli,“协调路线襟翼阻尼参数的成熟路线工作组建议,第2版”,成熟路线229,2001年10月。

[RFC2385] Heffernan, A., "Protection of BGP Sessions via the TCP MD5 Signature Option", RFC 2385, August 1998.

[RFC2385]Heffernan,A.,“通过TCP MD5签名选项保护BGP会话”,RFC 2385,1998年8月。

[GLSSRY] Juniper Networks, "Junos(tm) Internet Software Configuration Guide Routing and Routing Protocols, Release 4.2", Junos 4.2 and other releases, September 2000, <http://www.juniper.net/techpubs/software/junos/junos42/ swcmdref42/html/glossary.html> . [RFC2547] Rosen, E. and Y. Rekhter, "BGP/MPLS VPNs", RFC 2547, March 1999.

[GLSSRY]Juniper Networks,“Junos(tm)互联网软件配置指南路由和路由协议,4.2版”,Junos 4.2和其他版本,2000年9月<http://www.juniper.net/techpubs/software/junos/junos42/ swcmdref42/html/glossary.html>。[RFC2547]Rosen,E.和Y.Rekhter,“BGP/MPLS VPN”,RFC 2547,1999年3月。

[PKTTRAIN] Jain, R. and S. Routhier, "Packet trains -- measurement and a new model for computer network traffic", IEEE Journal on Selected Areas in Communication 4(6), September 1986.

[PKTTRAIN]Jain,R.和S.Routhier,“分组列车——计算机网络流量的测量和新模型”,《IEEE通信选定领域杂志》4(6),1986年9月。

11.2. Informative References
11.2. 资料性引用

[RFC2918] Chen, E., "Route Refresh Capability for BGP-4", RFC 2918, September 2000.

[RFC2918]Chen,E.“BGP-4的路由刷新能力”,RFC 2918,2000年9月。

[GRMBGP] Sangli, S., Rekhter, Y., Fernando, R., Scudder, J., and E. Chen, "Graceful Restart Mechanism for BGP", Work in Progress, June 2004.

[GRMBGP]Sangli,S.,Rekhter,Y.,Fernando,R.,Scudder,J.,和E.Chen,“BGP的优雅重启机制”,正在进行的工作,2004年6月。

[BGP-4] Chen, E. and Y. Rekhter, "Cooperative Route Filtering Capability for BGP-4", Work in Progress, March 2004.

[BGP-4]Chen,E.和Y.Rekhter,“BGP-4的合作路由过滤能力”,正在进行的工作,2004年3月。

[RFC3654] Khosravi, H. and T. Anderson, "Requirements for Separation of IP Control and Forwarding", RFC 3654, November 2003.

[RFC3654]Khosravi,H.和T.Anderson,“IP控制和转发分离的要求”,RFC 3654,2003年11月。

[RFC3345] McPherson, D., Gill, V., Walton, D., and A. Retana, "Border Gateway Protocol (BGP) Persistent Route Oscillation Condition", RFC 3345, August 2002.

[RFC3345]McPherson,D.,Gill,V.,Walton,D.,和A.Retana,“边界网关协议(BGP)持续路由振荡条件”,RFC 33452002年8月。

[RFC2858] Bates, T., Rekhter, Y., Chandra, R., and D. Katz, "Multiprotocol Extensions for BGP-4", RFC 2858, June 2000.

[RFC2858]Bates,T.,Rekhter,Y.,Chandra,R.,和D.Katz,“BGP-4的多协议扩展”,RFC 2858,2000年6月。

[RFC2545] Marques, P. and F. Dupont, "Use of BGP-4 Multiprotocol Extensions for IPv6 Inter-Domain Routing", RFC 2545, March 1999.

[RFC2545]Marques,P.和F.Dupont,“将BGP-4多协议扩展用于IPv6域间路由”,RFC 25451999年3月。

Authors' Addresses

作者地址

Howard Berkowitz Gett Communications & CCI Training 5012 S. 25th St Arlington, VA 22206 USA

Howard Berkowitz Gett Communications&CCI Training 5012 S.25 St Arlington,弗吉尼亚州22206美国

   Phone: +1 703 998-5819
   Fax:   +1 703 998-5058
   EMail: hcb@gettcomm.com
        
   Phone: +1 703 998-5819
   Fax:   +1 703 998-5058
   EMail: hcb@gettcomm.com
        

Elwyn B. Davies Folly Consulting The Folly Soham Cambs, CB7 5AW UK

Elwyn B.Davies Folly咨询公司Folly Soham Cambs,CB7 5AW英国

   Phone: +44 7889 488 335
   EMail: elwynd@dial.pipex.com
        
   Phone: +44 7889 488 335
   EMail: elwynd@dial.pipex.com
        

Susan Hares Nexthop Technologies 825 Victors Way Ann Arbor, MI 48108 USA

Susan Hares Nexthop Technologies美国密歇根州安阿伯路825号,邮编:48108

   Phone: +1 734 222-1610
   EMail: skh@nexthop.com
        
   Phone: +1 734 222-1610
   EMail: skh@nexthop.com
        

Padma Krishnaswamy SAIC 331 Newman Springs Road Red Bank, New Jersey 07701 USA

Padma Krishnaswamy SAIC 331美国新泽西州纽曼斯普林斯路红银行07701

   EMail: padma.krishnaswamy@saic.com
        
   EMail: padma.krishnaswamy@saic.com
        

Marianne Lepp Consultant

玛丽安·莱普顾问

   EMail: mlepp@lepp.com
        
   EMail: mlepp@lepp.com
        

Full Copyright Statement

完整版权声明

Copyright (C) The Internet Society (2005).

版权所有(C)互联网协会(2005年)。

This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.

本文件受BCP 78中包含的权利、许可和限制的约束,除其中规定外,作者保留其所有权利。

This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

本文件及其包含的信息是按“原样”提供的,贡献者、他/她所代表或赞助的组织(如有)、互联网协会和互联网工程任务组不承担任何明示或暗示的担保,包括但不限于任何保证,即使用本文中的信息不会侵犯任何权利,或对适销性或特定用途适用性的任何默示保证。

Intellectual Property

知识产权

The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79.

IETF对可能声称与本文件所述技术的实施或使用有关的任何知识产权或其他权利的有效性或范围,或此类权利下的任何许可可能或可能不可用的程度,不采取任何立场;它也不表示它已作出任何独立努力来确定任何此类权利。有关RFC文件中权利的程序信息,请参见BCP 78和BCP 79。

Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.

向IETF秘书处披露的知识产权副本和任何许可证保证,或本规范实施者或用户试图获得使用此类专有权利的一般许可证或许可的结果,可从IETF在线知识产权存储库获取,网址为http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.

IETF邀请任何相关方提请其注意任何版权、专利或专利申请,或其他可能涵盖实施本标准所需技术的专有权利。请将信息发送至IETF的IETF-ipr@ietf.org.

Acknowledgement

确认

Funding for the RFC Editor function is currently provided by the Internet Society.

RFC编辑功能的资金目前由互联网协会提供。