Network Working Group                                     E. Mannie, Ed.
Request for Comments: 4427                                      Perceval
Category: Informational                            D. Papadimitriou, Ed.
                                                                 Alcatel
                                                              March 2006
        
Network Working Group                                     E. Mannie, Ed.
Request for Comments: 4427                                      Perceval
Category: Informational                            D. Papadimitriou, Ed.
                                                                 Alcatel
                                                              March 2006
        

Recovery (Protection and Restoration) Terminology for Generalized Multi-Protocol Label Switching (GMPLS)

通用多协议标签交换(GMPLS)的恢复(保护和恢复)术语

Status of This Memo

关于下段备忘

This memo provides information for the Internet community. It does not specify an Internet standard of any kind. Distribution of this memo is unlimited.

本备忘录为互联网社区提供信息。它没有规定任何类型的互联网标准。本备忘录的分发不受限制。

Copyright Notice

版权公告

Copyright (C) The Internet Society (2006).

版权所有(C)互联网协会(2006年)。

Abstract

摘要

This document defines a common terminology for Generalized Multi-Protocol Label Switching (GMPLS)-based recovery mechanisms (i.e., protection and restoration). The terminology is independent of the underlying transport technologies covered by GMPLS.

本文档定义了基于通用多协议标签交换(GMPLS)的恢复机制(即保护和恢复)的通用术语。该术语独立于GMPLS涵盖的基础运输技术。

Table of Contents

目录

   1. Introduction ....................................................3
   2. Contributors ....................................................4
   3. Conventions Used in this Document ...............................5
   4. Recovery Terminology Common to Protection and Restoration .......5
      4.1. Working and Recovery LSP/Span ..............................6
      4.2. Traffic Types ..............................................6
      4.3. LSP/Span Protection and Restoration ........................6
      4.4. Recovery Scope .............................................7
      4.5. Recovery Domain ............................................8
      4.6. Recovery Types .............................................8
      4.7. Bridge Types ..............................................10
      4.8. Selector Types ............................................10
      4.9. Recovery GMPLS Nodes ......................................11
      4.10. Switch-over Mechanism ....................................11
      4.11. Reversion operations .....................................11
      4.12. Failure Reporting ........................................12
      4.13. External commands ........................................12
      4.14. Unidirectional versus Bi-Directional Recovery Switching ..13
      4.15. Full versus Partial Span Recovery Switching ..............14
      4.16. Recovery Schemes Related Time and Durations ..............14
      4.17. Impairment ...............................................15
      4.18. Recovery Ratio ...........................................15
      4.19. Hitless Protection Switch-over ...........................15
      4.20. Network Survivability ....................................15
      4.21. Survivable Network .......................................16
      4.22. Escalation ...............................................16
   5. Recovery Phases ................................................16
      5.1. Entities Involved During Recovery .........................17
   6. Protection Schemes .............................................17
      6.1. 1+1 Protection ............................................18
      6.2. 1:N (N >= 1) Protection ...................................18
      6.3. M:N (M, N > 1, N >= M) Protection .........................18
      6.4. Notes on Protection Schemes ...............................19
   7. Restoration Schemes ............................................19
      7.1. Pre-Planned LSP Restoration ...............................19
           7.1.1. Shared-Mesh Restoration ............................19
      7.2. LSP Restoration ...........................................20
           7.2.1. Hard LSP Restoration ...............................20
           7.2.2. Soft LSP Restoration ...............................20
   8. Security Considerations ........................................20
   9. References .....................................................20
      9.1. Normative References ......................................20
      9.2. Informative References ....................................20
   10. Acknowledgements ..............................................21
        
   1. Introduction ....................................................3
   2. Contributors ....................................................4
   3. Conventions Used in this Document ...............................5
   4. Recovery Terminology Common to Protection and Restoration .......5
      4.1. Working and Recovery LSP/Span ..............................6
      4.2. Traffic Types ..............................................6
      4.3. LSP/Span Protection and Restoration ........................6
      4.4. Recovery Scope .............................................7
      4.5. Recovery Domain ............................................8
      4.6. Recovery Types .............................................8
      4.7. Bridge Types ..............................................10
      4.8. Selector Types ............................................10
      4.9. Recovery GMPLS Nodes ......................................11
      4.10. Switch-over Mechanism ....................................11
      4.11. Reversion operations .....................................11
      4.12. Failure Reporting ........................................12
      4.13. External commands ........................................12
      4.14. Unidirectional versus Bi-Directional Recovery Switching ..13
      4.15. Full versus Partial Span Recovery Switching ..............14
      4.16. Recovery Schemes Related Time and Durations ..............14
      4.17. Impairment ...............................................15
      4.18. Recovery Ratio ...........................................15
      4.19. Hitless Protection Switch-over ...........................15
      4.20. Network Survivability ....................................15
      4.21. Survivable Network .......................................16
      4.22. Escalation ...............................................16
   5. Recovery Phases ................................................16
      5.1. Entities Involved During Recovery .........................17
   6. Protection Schemes .............................................17
      6.1. 1+1 Protection ............................................18
      6.2. 1:N (N >= 1) Protection ...................................18
      6.3. M:N (M, N > 1, N >= M) Protection .........................18
      6.4. Notes on Protection Schemes ...............................19
   7. Restoration Schemes ............................................19
      7.1. Pre-Planned LSP Restoration ...............................19
           7.1.1. Shared-Mesh Restoration ............................19
      7.2. LSP Restoration ...........................................20
           7.2.1. Hard LSP Restoration ...............................20
           7.2.2. Soft LSP Restoration ...............................20
   8. Security Considerations ........................................20
   9. References .....................................................20
      9.1. Normative References ......................................20
      9.2. Informative References ....................................20
   10. Acknowledgements ..............................................21
        
1. Introduction
1. 介绍

This document defines a common terminology for Generalized Multi-Protocol Label Switching (GMPLS)-based recovery mechanisms (i.e., protection and restoration).

本文档定义了基于通用多协议标签交换(GMPLS)的恢复机制(即保护和恢复)的通用术语。

The terminology proposed in this document is independent of the underlying transport technologies and borrows from the G.808.1 ITU-T Recommendation [G.808.1] and from the G.841 ITU-T Recommendation [G.841]. The restoration terminology and concepts have been gathered from numerous sources including IETF documents.

本文件中提出的术语独立于基础传输技术,并借鉴了G.808.1 ITU-T建议[G.808.1]和G.841 ITU-T建议[G.841]。恢复术语和概念已从众多来源收集,包括IETF文件。

In the context of this document, the term "recovery" denotes both protection and restoration. The specific terms "protection" and "restoration" will only be used when differentiation is required.

在本文件中,“恢复”一词指的是保护和恢复。特定术语“保护”和“恢复”仅在需要区分时使用。

This document focuses on the terminology for the recovery of Label Switched Paths (LSPs) controlled by a GMPLS control plane. The proposed terminology applies to end-to-end, segment, and span (i.e., link) recovery. Note that the terminology for recovery of the control plane itself is not in the scope of this document.

本文档重点介绍由GMPLS控制平面控制的标签交换路径(LSP)的恢复术语。建议的术语适用于端到端、段和跨度(即链路)恢复。请注意,控制平面本身的恢复术语不在本文件的范围内。

Protection and restoration of switched LSPs under tight time constraints is a challenging problem. This is particularly relevant to optical networks that consist of Time Division Multiplex (TDM) and/or all-optical (photonic) cross-connects referred to as GMPLS nodes (or simply nodes, or even sometimes "Label Switching Routers, or LSRs") connected in a general topology [RFC3945].

在紧时间约束下切换LSP的保护和恢复是一个具有挑战性的问题。这尤其适用于由时分复用(TDM)和/或全光(光子)交叉连接组成的光网络,这些交叉连接被称为GMPLS节点(或简单的节点,甚至有时是“标签交换路由器,或LSR”),在一般拓扑中连接[RFC3945]。

Recovery typically involves the activation of a recovery (or alternate) LSP when a failure is encountered in the working LSP.

恢复通常涉及在工作LSP中遇到故障时激活恢复(或备用)LSP。

A working or recovery LSP is characterized by an ingress interface, an egress interface, and a set of intermediate nodes and spans through which the LSP is routed. The working and recovery LSPs are typically resource disjoint (e.g., node and/or span disjoint). This ensures that a single failure will not affect both the working and recovery LSPs.

工作或恢复LSP的特征是入口接口、出口接口和一组中间节点和跨距,LSP通过这些节点和跨距进行路由。工作和恢复LSP通常是资源不相交的(例如,节点和/或跨度不相交)。这可确保单个故障不会同时影响工作LSP和恢复LSP。

A bi-directional span between neighboring nodes is usually realized as a pair of unidirectional spans. Therefore, the end-to-end path for a bi-directional LSP consists of a series of bi-directional segments (i.e., Sub-Network Connections, or SNCs, in the ITU-T terminology) between the source and destination nodes, traversing intermediate nodes.

相邻节点之间的双向跨距通常实现为一对单向跨距。因此,双向LSP的端到端路径由源节点和目的节点之间穿过中间节点的一系列双向段(即,在ITU-T术语中为子网连接或snc)组成。

2. Contributors
2. 贡献者

This document is the result of a joint effort by the CCAMP Working Group Protection and Restoration design team. The following are the authors that contributed to the present document:

本文件是CCAMP工作组保护和修复设计团队共同努力的结果。以下是编写本文件的作者:

Deborah Brungard (AT&T) Rm. D1-3C22 - 200 S. Laurel Ave. Middletown, NJ 07748, USA

德博拉·布伦加德(美国电话电报公司)Rm。D1-3C22-200美国新泽西州米德尔敦月桂大道南07748号

   EMail: dbrungard@att.com
        
   EMail: dbrungard@att.com
        

Sudheer Dharanikota

苏德尔·达兰尼科塔

   EMail: sudheer@ieee.org
        
   EMail: sudheer@ieee.org
        

Jonathan P. Lang (Sonos) 506 Chapala Street Santa Barbara, CA 93101, USA

乔纳森·P·朗(索诺斯)美国加利福尼亚州圣巴巴拉查帕拉街506号,邮编:93101

   EMail: jplang@ieee.org
        
   EMail: jplang@ieee.org
        

Guangzhi Li (AT&T) 180 Park Avenue, Florham Park, NJ 07932, USA

美国新泽西州弗罗勒姆公园公园公园大道180号广志里(AT&T)07932

   EMail: gli@research.att.com
        
   EMail: gli@research.att.com
        

Eric Mannie Perceval Rue Tenbosch, 9 1000 Brussels Belgium

Eric Mannie Perceval Rue Tenbosch,9 1000比利时布鲁塞尔

   Phone: +32-2-6409194
   EMail: eric.mannie@perceval.net
        
   Phone: +32-2-6409194
   EMail: eric.mannie@perceval.net
        

Dimitri Papadimitriou (Alcatel) Francis Wellesplein, 1 B-2018 Antwerpen, Belgium

Dimitri Papadimitriou(阿尔卡特)Francis Welleslein,1 B-2018比利时安特卫普

   EMail: dimitri.papadimitriou@alcatel.be
        
   EMail: dimitri.papadimitriou@alcatel.be
        

Bala Rajagopalan Microsoft India Development Center Hyderabad, India

巴拉·拉贾戈帕兰微软印度发展中心,印度海得拉巴

   EMail: balar@microsoft.com
        
   EMail: balar@microsoft.com
        

Yakov Rekhter (Juniper) 1194 N. Mathilda Avenue Sunnyvale, CA 94089, USA

亚科夫·雷克特(Juniper)美国加利福尼亚州桑尼维尔市马蒂尔达大道北1194号,邮编94089

   EMail: yakov@juniper.net
        
   EMail: yakov@juniper.net
        
3. Conventions Used in this Document
3. 本文件中使用的公约

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

本文件中的关键词“必须”、“不得”、“必需”、“应”、“不应”、“应”、“不应”、“建议”、“可”和“可选”应按照[RFC2119]中所述进行解释。

4. Recovery Terminology Common to Protection and Restoration
4. 保护和恢复通用的恢复术语

This section defines the following general terms common to both protection and restoration (i.e., recovery). In addition, most of these terms apply to end-to-end, segment, and span LSP recovery. Note that span recovery does not protect the nodes at each end of the span, otherwise end-to-end or segment LSP recovery should be used.

本节定义了以下保护和恢复(即恢复)通用术语。此外,这些术语大多适用于端到端、段和跨LSP恢复。请注意,范围恢复不会保护范围两端的节点,否则应使用端到端或段LSP恢复。

The terminology and the definitions were originally taken from [G.808.1]. However, for generalization, the following language, which is not directly related to recovery, has been adapted to GMPLS and the common IETF terminology:

术语和定义最初取自[G.808.1]。但是,为了通用化,以下与恢复没有直接关系的语言已被改编为GMPLS和通用IETF术语:

An LSP is used as a generic term to designate either an SNC (Sub-Network Connection) or an NC (Network Connection) in ITU-T terminology. The ITU-T uses the term transport entity to designate either a link, an SNC, or an NC. The term "Traffic" is used instead of "Traffic Signal". The term protection or restoration "scheme" is used instead of protection or restoration "architecture".

LSP用作ITU-T术语中指定SNC(子网连接)或NC(网络连接)的通用术语。ITU-T使用术语传输实体来指定链路、SNC或NC。使用“交通”一词代替“交通信号灯”。使用术语保护或恢复“方案”代替保护或恢复“架构”。

The reader is invited to read [G.841] and [G.808.1] for references to SDH protection and Generic Protection Switching terminology, respectively. Note that restoration is not in the scope of [G.808.1].

请读者阅读[G.841]和[G.808.1],分别参考SDH保护和通用保护交换术语。注意,恢复不在[G.808.1]的范围内。

4.1. Working and Recovery LSP/Span
4.1. 工作和恢复LSP/Span

A working LSP/span is an LSP/span transporting "normal" user traffic. A recovery LSP/span is an LSP/span used to transport "normal" user traffic when the working LSP/span fails. Additionally, the recovery LSP/span may transport "extra" user traffic (i.e., pre-emptable traffic) when normal traffic is carried over the working LSP/span.

工作LSP/span是传输“正常”用户流量的LSP/span。恢复LSP/span是一个LSP/span,用于在工作LSP/span出现故障时传输“正常”用户流量。此外,当正常业务通过工作LSP/span传输时,恢复LSP/span可以传输“额外”用户业务(即,可抢占业务)。

4.2. Traffic Types
4.2. 交通类型

The different types of traffic that can be transported over an LSP/span, in the context of this document, are defined hereafter:

在本文件的上下文中,可通过LSP/span传输的不同类型的流量定义如下:

A. Normal traffic:

(甲)正常交通:

User traffic that may be protected by two alternative LSPs/spans (the working and recovery LSPs/spans).

可由两个备选LSP/spans(工作LSP/spans和恢复LSP/spans)保护的用户流量。

B. Extra traffic:

B.额外交通:

User traffic carried over recovery resources (e.g., a recovery LSP/span) when these resources are not being used for the recovery of normal traffic (i.e., when the recovery resources are in standby mode). When the recovery resources are required to recover normal traffic from the failed working LSP/span, the extra traffic is pre-empted. Extra traffic is not protected by definition, but may be restored. Moreover, extra traffic does not need to commence or be terminated at the ends of the LSPs/spans that it uses.

当恢复资源(例如,恢复LSP/span)不用于恢复正常流量时(即,当恢复资源处于待机模式时),通过恢复资源(例如,恢复LSP/span)携带的用户流量。当需要恢复资源来从发生故障的工作LSP/span恢复正常流量时,额外流量将被抢占。额外流量不受定义保护,但可以恢复。此外,额外的流量不需要在其使用的LSP/跨度末端开始或终止。

C. Null traffic:

C.零流量:

Traffic carried over the recovery LSP/span if it is not used to carry normal or extra traffic. Null traffic can be any kind of traffic that conforms to the signal structure of the specific layer, and it is ignored (not selected) at the egress of the recovery LSP/span.

如果恢复LSP/span未用于承载正常或额外流量,则通过该LSP/span承载的流量。空业务可以是符合特定层的信号结构的任何类型的业务,并且在恢复LSP/span的出口处忽略(未选择)。

4.3. LSP/Span Protection and Restoration
4.3. LSP/Span保护和恢复

The following subtle distinction is generally made between the terms "protection" and "restoration", even though these terms are often used interchangeably [RFC3386].

“保护”和“恢复”这两个术语之间通常有以下细微的区别,尽管这些术语经常互换使用[RFC3386]。

The distinction between protection and restoration is made based on the resource allocation done during the recovery LSP/span establishment. The distinction between different types of restoration is made based on the level of route computation, signaling, and resource allocation during the restoration LSP/span establishment.

保护和恢复之间的区别基于恢复LSP/span建立期间完成的资源分配。在恢复LSP/span建立期间,根据路由计算、信令和资源分配的级别对不同类型的恢复进行区分。

A. LSP/Span Protection

A.LSP/Span保护

LSP/span protection denotes the paradigm whereby one or more dedicated protection LSP(s)/span(s) is/are fully established to protect one or more working LSP(s)/span(s).

LSP/span保护表示完全建立一个或多个专用保护LSP/span以保护一个或多个工作LSP/span的范例。

For a protection LSP, this implies that route computation took place, that the LSP was fully signaled all the way, and that its resources were fully selected (i.e., allocated) and cross-connected between the ingress and egress nodes.

对于保护LSP,这意味着进行了路由计算,LSP始终被完全信号化,其资源被完全选择(即,分配)并在入口和出口节点之间交叉连接。

For a protection span, this implies that the span has been selected and reserved for protection.

对于保护范围,这意味着该范围已被选择并保留用于保护。

Indeed, it means that no signaling takes place to establish the protection LSP/span when a failure occurs. However, various other kinds of signaling may take place between the ingress and egress nodes for fault notification, to synchronize their use of the protection LSP/span, for reversion, etc.

事实上,这意味着在发生故障时,不会发生建立保护LSP/span的信令。然而,在入口和出口节点之间可以发生各种其他类型的信令,用于故障通知、同步它们对保护LSP/span的使用、用于恢复等。

B. LSP/Span Restoration

B.LSP/Span恢复

LSP/span restoration denotes the paradigm whereby some restoration resources may be pre-computed, signaled, and selected a priori, but not cross-connected to restore a working LSP/span. The complete establishment of the restoration LSP/span occurs only after a failure of the working LSP/span, and requires some additional signaling.

LSP/span恢复表示一种范例,在此范例中,可以预先计算、通知和选择一些恢复资源,但不交叉连接以恢复工作LSP/span。只有在工作LSP/span发生故障后,才能完全建立恢复LSP/span,并且需要一些额外的信令。

Both protection and restoration require signaling. Signaling to establish the recovery resources and signaling associated with the use of the recovery LSP(s)/span(s) are needed.

保护和恢复都需要信令。需要用于建立恢复资源的信令以及与恢复LSP/span的使用相关联的信令。

4.4. Recovery Scope
4.4. 恢复范围

Recovery can be applied at various levels throughout the network. An LSP may be subject to local (span), segment, and/or end-to-end recovery.

可以在整个网络的各个级别应用恢复。LSP可以进行本地(span)、段和/或端到端恢复。

Local (span) recovery refers to the recovery of an LSP over a link between two nodes.

本地(span)恢复是指通过两个节点之间的链路恢复LSP。

End-to-end recovery refers to the recovery of an entire LSP from its source (ingress node end-point) to its destination (egress node end-point).

端到端恢复是指将整个LSP从其源(入口节点端点)恢复到其目的地(出口节点端点)。

Segment recovery refers to the recovery over a portion of the network of a segment LSP (i.e., an SNC in the ITU-T terminology) of an end-to-end LSP. Such recovery protects against span and/or node failure

段恢复是指端到端LSP的段LSP(即ITU-T术语中的SNC)在网络的一部分上的恢复。这样的恢复可以防止范围和/或节点故障

over a particular portion of the network that is traversed by an end-to-end LSP.

通过由端到端LSP穿越的网络的特定部分。

4.5. Recovery Domain
4.5. 恢复域

A recovery domain is defined as a set of nodes and spans, over which one or more recovery schemes are provided. A recovery domain served by one single recovery scheme is referred to as a "single recovery domain", while a recovery domain served by multiple recovery schemes is referred to as a "multi recovery domain".

恢复域定义为一组节点和范围,在这些节点和范围上提供一个或多个恢复方案。由一个单一恢复方案服务的恢复域称为“单一恢复域”,而由多个恢复方案服务的恢复域称为“多恢复域”。

The recovery operation is contained within the recovery domain. A GMPLS recovery domain must be entirely contained within a GMPLS domain. A GMPLS domain (defined as a set of nodes and spans controlled by GMPLS) may contain multiple recovery domains.

恢复操作包含在恢复域中。GMPLS恢复域必须完全包含在GMPLS域中。GMPLS域(定义为由GMPLS控制的一组节点和范围)可能包含多个恢复域。

4.6. Recovery Types
4.6. 恢复类型

The different recovery types can be classified depending on the number of recovery LSPs/spans that are protecting a given number of working LSPs/spans. The definitions given hereafter are from the point of view of a working LSP/span that needs to be protected by a recovery scheme.

根据保护给定数量的工作LSP/范围的恢复LSP/范围的数量,可以对不同的恢复类型进行分类。下文给出的定义是从需要通过恢复方案保护的工作LSP/span的角度出发的。

A. 1+1 type: dedicated protection

A.1+1类型:专用保护

One dedicated protection LSP/span protects exactly one working LSP/span, and the normal traffic is permanently duplicated at the ingress node on both the working and protection LSPs/spans. No extra traffic can be carried over the protection LSP/span.

一个专用保护LSP/span仅保护一个工作LSP/span,正常流量在工作和保护LSP/span上的入口节点永久复制。无法通过保护LSP/span传输额外流量。

This type is applicable to LSP/span protection, but not to LSP/span restoration.

该类型适用于LSP/span保护,但不适用于LSP/span恢复。

B. 0:1 type: unprotected

B.0:1类型:未受保护

No specific recovery LSP/span protects the working LSP/span. However, the working LSP/span can potentially be restored through any alternate available route/span, with or without any pre-computed restoration route. Note that no resources are pre-established for this recovery type.

没有特定的恢复LSP/span保护工作LSP/span。但是,工作LSP/span可能通过任何备用可用路由/span进行恢复,包括或不包括任何预先计算的恢复路由。请注意,没有为此恢复类型预先建立任何资源。

This type is applicable to LSP/span restoration, but not to LSP/span protection. Span restoration can be achieved, for instance, by moving all the LSPs transported over a failed span to a dynamically selected span.

此类型适用于LSP/span恢复,但不适用于LSP/span保护。例如,可以通过将故障范围内传输的所有LSP移动到动态选择的范围来实现范围恢复。

C. 1:1 type: dedicated recovery with extra traffic

C.1:1类型:具有额外流量的专用恢复

One specific recovery LSP/span protects exactly one specific working LSP/span, but the normal traffic is transmitted over only one LSP (working or recovery) at a time. Extra traffic can be transported using the recovery LSP/span resources.

一个特定的恢复LSP/span正好保护一个特定的工作LSP/span,但一次只能通过一个LSP(工作或恢复)传输正常流量。可以使用恢复LSP/span资源传输额外流量。

This type is applicable to LSP/span protection and LSP restoration, but not to span restoration.

该类型适用于LSP/span保护和LSP恢复,但不适用于span恢复。

   D. 1:N (N > 1) type: shared recovery with extra traffic
        
   D. 1:N (N > 1) type: shared recovery with extra traffic
        

A specific recovery LSP/span is dedicated to the protection of up to N working LSPs/spans. The set of working LSPs/spans is explicitly identified. Extra traffic can be transported over the recovery LSP/span. All these LSPs/spans must start and end at the same nodes.

特定恢复LSP/span专用于保护多达N个工作LSP/span。工作LSP/跨度的集合已明确标识。额外的流量可以通过恢复LSP/span传输。所有这些LSP/跨度必须在相同的节点上开始和结束。

Sometimes, the working LSPs/spans are assumed to be resource disjoint in the network so that they do not share any failure probability, but this is not mandatory. Obviously, if more than one working LSP/span in the set of N are affected by some failure(s) at the same time, the traffic on only one of these failed LSPs/spans may be recovered over the recovery LSP/span. Note that N can be arbitrarily large (i.e., infinite). The choice of N is a policy decision.

有时,工作LSP/跨度被假定为网络中的资源不相交,因此它们不会共享任何故障概率,但这不是强制性的。显然,如果N组中的多个工作LSP/span同时受到某些故障的影响,则只能通过恢复LSP/span恢复这些故障LSP/span中的一个上的通信量。注意,N可以任意大(即无限大)。N的选择是一项政策决定。

This type is applicable to LSP/span protection and LSP restoration, but not to span restoration.

该类型适用于LSP/span保护和LSP恢复,但不适用于span恢复。

Note: a shared recovery where each recovery resource can be shared by a maximum of X LSPs/spans is not defined as a recovery type but as a recovery scheme. The choice of X is a network resource management policy decision.

注意:每个恢复资源最多可由X个LSP/跨度共享的共享恢复不定义为恢复类型,而是定义为恢复方案。选择X是一个网络资源管理策略决策。

E. M:N (M, N > 1, N >= M) type:

E.M:N(M,N>1,N>=M)类型:

A set of M specific recovery LSPs/spans protects a set of up to N specific working LSPs/spans. The two sets are explicitly identified. Extra traffic can be transported over the M recovery LSPs/spans when available. All the LSPs/spans must start and end at the same nodes.

一组M个特定恢复LSP/跨度保护一组多达N个特定工作LSP/跨度。这两个集合是明确标识的。如果可用,可以通过M个恢复LSP/跨度传输额外流量。所有LSP/跨度必须在相同的节点上开始和结束。

Sometimes, the working LSPs/spans are assumed to be resource disjoint in the network so that they do not share any failure probability, but this is not mandatory. Obviously, if several working LSPs/spans in the set of N are concurrently affected by some failure(s), the traffic on only M of these failed LSPs/spans may be recovered. Note that N can be arbitrarily large (i.e., infinite). The choice of N and M is a policy decision.

有时,工作LSP/跨度被假定为网络中的资源不相交,因此它们不会共享任何故障概率,但这不是强制性的。显然,如果N组中的多个工作LSP/跨度同时受到某些故障的影响,则这些故障LSP/跨度中只有M个上的通信量可以恢复。注意,N可以任意大(即无限大)。N和M的选择是一个决策。

This type is applicable to LSP/span protection and LSP restoration, but not to span restoration.

该类型适用于LSP/span保护和LSP恢复,但不适用于span恢复。

4.7. Bridge Types
4.7. 桥型

A bridge is the function that connects the normal traffic and extra traffic to the working and recovery LSP/span.

桥接器是将正常通信量和额外通信量连接到工作和恢复LSP/span的功能。

A. Permanent bridge

A.永久性桥梁

Under a 1+1 type, the bridge connects the normal traffic to both the working and protection LSPs/spans. This type of bridge is not applicable to restoration types. There is, of course, no extra traffic connected to the recovery LSP/span.

在1+1类型下,桥梁将正常交通连接到工作和保护LSP/跨度。这种类型的桥梁不适用于修复类型。当然,没有额外的流量连接到恢复LSP/span。

B. Broadcast bridge

B.广播桥

For 1:N and M:N types, the bridge permanently connects the normal traffic to the working LSP/span. In the event of recovery switching, the normal traffic is additionally connected to the recovery LSP/span. Extra traffic is either not connected or connected to the recovery LSP/span.

对于1:N和M:N类型,桥梁将正常交通永久连接到工作LSP/span。在恢复切换的情况下,正常通信量额外连接到恢复LSP/span。额外流量未连接或连接到恢复LSP/span。

C. Selector bridge

C.选择桥

For 1:N and M:N types, the bridge connects the normal traffic to either the working or the recovery LSP/span. Extra traffic is either not connected or connected to the recovery LSP/span.

对于1:N和M:N类型,网桥将正常通信量连接到工作或恢复LSP/span。额外流量未连接或连接到恢复LSP/span。

4.8. Selector Types
4.8. 选择器类型

A selector is the function that extracts the normal traffic from either the working or the recovery LSP/span. Extra traffic is either extracted from the recovery LSP/span, or is not extracted.

选择器是从工作或恢复LSP/span中提取正常通信量的功能。从恢复LSP/span提取额外流量,或不提取额外流量。

A. Selective selector

A.选择性选择器

Is a selector that extracts the normal traffic from either the working LSP/span output or the recovery LSP/span output.

是从工作LSP/span输出或恢复LSP/span输出中提取正常通信量的选择器。

B. Merging selector

B.合并选择器

For 1:N and M:N protection types, the selector permanently extracts the normal traffic from both the working and recovery LSP/span

对于1:N和M:N保护类型,选择器从工作和恢复LSP/span中永久提取正常通信量

outputs. This alternative works only in combination with a selector bridge.

产出。此备选方案仅与选择器桥接器结合使用。

4.9. Recovery GMPLS Nodes
4.9. 恢复GMPLS节点

This section defines the GMPLS nodes involved during recovery.

本节定义了恢复过程中涉及的GMPLS节点。

A. Ingress GMPLS node of an end-to-end LSP/segment LSP/span

A.端到端LSP/段LSP/span的入口GMPLS节点

The ingress node of an end-to-end LSP/segment LSP/span is where the normal traffic may be bridged to the recovery end-to-end LSP/segment LSP/span. Also known as source node in the ITU-T terminology.

端到端LSP/段LSP/span的入口节点是正常业务可以桥接到恢复端到端LSP/段LSP/span的地方。在ITU-T术语中也称为源节点。

B. Egress GMPLS node of an end-to-end LSP/segment LSP/span

B.端到端LSP/段LSP/span的出口GMPLS节点

The egress node of an end-to-end LSP/segment LSP/span is where the normal traffic may be selected from either the working or the recovery end-to-end LSP/segment LSP/span. Also known as sink node in the ITU-T terminology.

端到端LSP/段LSP/span的出口节点是可以从工作或恢复端到端LSP/段LSP/span中选择正常业务的节点。在ITU-T术语中也称为汇聚节点。

C. Intermediate GMPLS node of an end-to-end LSP/segment LSP

C.端到端LSP/段LSP的中间GMPLS节点

A node along either the working or recovery end-to-end LSP/segment LSP route between the corresponding ingress and egress nodes. Also known as intermediate node in the ITU-T terminology.

在相应的入口和出口节点之间沿工作或恢复端到端LSP/段LSP路由的节点。在ITU-T术语中也称为中间节点。

4.10. Switch-over Mechanism
4.10. 切换机构

A switch-over is an action that can be performed at both the bridge and the selector. This action is as follows:

切换是可以在桥接器和选择器上执行的动作。该行动如下:

A. For the selector:

A.对于选择器:

The action of selecting normal traffic from the recovery LSP/span rather than from the working LSP/span.

从恢复LSP/span而不是从工作LSP/span中选择正常通信量的操作。

B. For the bridge:

B.对于桥梁:

In case of permanent connection to the working LSP/span, the action of connecting or disconnecting the normal traffic to or from the recovery LSP/span. In case of non-permanent connection to the working LSP/span, the action of connecting the normal traffic to the recovery LSP/span.

在永久连接到工作LSP/span的情况下,将正常通信量连接到恢复LSP/span或从恢复LSP/span断开的动作。在非永久性连接到工作LSP/span的情况下,将正常通信量连接到恢复LSP/span的动作。

4.11. Reversion operations
4.11. 回归操作

A revertive recovery operation refers to a recovery switching operation, where the traffic returns to (or remains on) the working LSP/span when the switch-over requests are terminated (i.e., when the working LSP/span has recovered from the failure).

恢复恢复操作是指恢复切换操作,当切换请求终止时(即,当工作LSP/span已从故障中恢复时),通信量返回(或保持开启)工作LSP/span。

Therefore, a non-revertive recovery switching operation is when the traffic does not return to the working LSP/span when the switch-over requests are terminated.

因此,非恢复性恢复切换操作是指当切换请求终止时,通信量没有返回到工作LSP/span。

4.12. Failure Reporting
4.12. 故障报告

This section gives (for information) several signal types commonly used in transport planes to report a failure condition. Note that fault reporting may require additional signaling mechanisms.

本节给出了几种常用于运输机的信号类型(供参考),用于报告故障情况。请注意,故障报告可能需要额外的信号机制。

A. Signal Degrade (SD): a signal indicating that the associated data has degraded.

A.信号降级(SD):指示相关数据已降级的信号。

B. Signal Fail (SF): a signal indicating that the associated data has failed.

B.信号失效(SF):指示相关数据失效的信号。

C. Signal Degrade Group (SDG): a signal indicating that the associated group data has degraded.

C.信号降级组(SDG):指示相关组数据已降级的信号。

D. Signal Fail Group (SFG): a signal indicating that the associated group has failed.

D.信号故障组(SFG):指示相关组故障的信号。

Note: SDG and SFG definitions are under discussion at the ITU-T.

注:SDG和SFG的定义正在ITU-T上讨论。

4.13. External commands
4.13. 外部命令

This section defines several external commands, typically issued by an operator through the Network Management System (NMS)/Element Management System (EMS), that can be used to influence or command the recovery schemes.

本节定义了几个外部命令,这些命令通常由运营商通过网络管理系统(NMS)/网元管理系统(EMS)发出,可用于影响或命令恢复方案。

A. Lockout of recovery LSP/span:

A.恢复LSP/span的锁定:

A configuration action, initiated externally, that results in the recovery LSP/span being temporarily unavailable to transport traffic (either normal or extra traffic).

从外部启动的一种配置操作,导致恢复LSP/span暂时不可用于传输流量(正常或额外流量)。

B. Lockout of normal traffic:

B.正常交通的锁定:

A configuration action, initiated externally, that results in the normal traffic being temporarily not allowed to be routed over its recovery LSP/span. Note that in this case extra-traffic is still allowed on the recovery LSP/span.

外部启动的一种配置操作,导致正常通信暂时不允许通过其恢复LSP/span路由。请注意,在这种情况下,恢复LSP/span上仍允许额外的通信量。

C. Freeze:

C.冻结:

A configuration action, initiated externally, that prevents any switch-over action from being taken, and, as such, freezes the current state.

从外部启动的一种配置操作,用于防止执行任何切换操作,并因此冻结当前状态。

D. Forced switch-over for normal traffic:

D.正常交通的强制切换:

A switch-over action, initiated externally, that switches normal traffic to the recovery LSP/span, unless an equal or higher priority switch-over command is in effect.

一种从外部启动的切换操作,将正常通信量切换到恢复LSP/span,除非有同等或更高优先级的切换命令生效。

E. Manual switch-over for normal traffic:

E.正常交通的手动切换:

A switch-over action, initiated externally, that switches normal traffic to the recovery LSP/span, unless a fault condition exists on other LSPs/spans (including the recovery LSP/span) or an equal or higher priority switch-over command is in effect.

从外部启动的切换操作,将正常通信量切换到恢复LSP/span,除非其他LSP/span(包括恢复LSP/span)上存在故障条件或同等或更高优先级的切换命令生效。

F. Manual switch-over for recovery LSP/span:

F.恢复LSP/span的手动切换:

A switch-over action, initiated externally, that switches normal traffic to the working LSP/span, unless a fault condition exists on the working LSP/span or an equal or higher priority switch-over command is in effect.

从外部启动的切换操作,将正常通信量切换到工作LSP/span,除非工作LSP/span上存在故障或同等或更高优先级的切换命令生效。

G. Clear:

G.明确:

An action, initiated externally, that clears the active external command.

从外部启动的一种操作,用于清除激活的外部命令。

4.14. Unidirectional versus Bi-Directional Recovery Switching
4.14. 单向与双向恢复切换

A. Unidirectional recovery switching:

A.单向恢复切换:

A recovery switching mode in which, for a unidirectional fault (i.e., a fault affecting only one direction of transmission), only the normal traffic transported in the affected direction (of the LSP or span) is switched to the recovery LSP/span.

一种恢复切换模式,其中对于单向故障(即,仅影响一个传输方向的故障),只有在受影响方向(LSP或span)传输的正常业务被切换到恢复LSP/span。

B. Bi-directional recovery switching:

B.双向恢复切换:

A recovery switching mode in which, for a unidirectional fault, the normal traffic in both directions (of the LSP or span), including the affected direction and the unaffected direction, are switched to the recovery LSP/span.

一种恢复切换模式,对于单向故障,包括受影响方向和未受影响方向在内的两个方向(LSP或span)上的正常通信量切换到恢复LSP/span。

4.15. Full versus Partial Span Recovery Switching
4.15. 全量程与部分量程恢复切换

Bulk LSP recovery is initiated upon reception of either span failure notification or bulk failure notification of the S LSPs carried by this span. In either case, the corresponding recovery switching actions are performed at the LSP level, such that the ratio between the number of recovery switching messages and the number of recovered LSP (in one given direction) is minimized. If this ratio equals 1, one refers to full span recovery; otherwise, if this ratio is greater than 1, one refers to partial span recovery.

大容量LSP恢复在接收到此span承载的S LSP的span故障通知或大容量故障通知时启动。在任一情况下,在LSP级别执行相应的恢复切换动作,使得恢复切换消息的数目与恢复LSP的数目(在一个给定方向上)之间的比率最小化。如果该比率等于1,则1表示满量程恢复;否则,如果该比率大于1,则表示部分量程恢复。

A. Full Span Recovery

A.全量程恢复

All the S LSP carried over a given span are recovered under span failure condition. Full span recovery is also referred to as "bulk recovery".

在跨距失效条件下,恢复给定跨距上的所有S LSP。全量程恢复也称为“批量恢复”。

B. Partial Span Recovery

B.部分跨度恢复

Only a subset s of the S LSP carried over a given span is recovered under span failure condition. Both selection criteria of the entities belonging to this subset, and the decision concerning the recovery of the remaining (S - s) LSP, are based on local policy.

在跨距失效条件下,仅恢复给定跨距上携带的s LSP的子集s。属于该子集的实体的选择标准以及关于恢复剩余(S-S)LSP的决策都基于本地策略。

4.16. Recovery Schemes Related Time and Durations
4.16. 与时间和持续时间相关的恢复方案

This section gives several typical timing definitions that are of importance for recovery schemes.

本节给出了几种对恢复方案非常重要的典型定时定义。

A. Detection time:

A.检测时间:

The time between the occurrence of the fault or degradation and its detection. Note that this is a rather theoretical time because, in practice, this is difficult to measure.

故障或降级发生与检测之间的时间。请注意,这是一个相当理论化的时间,因为在实践中,这是很难衡量的。

B. Correlation time:

B.相关时间:

The time between the detection of the fault or degradation and the reporting of the signal fail or degrade. This time is typically used in correlating related failures or degradations.

检测到故障或降级与报告信号失败或降级之间的时间。此时间通常用于关联相关故障或降级。

C. Notification time:

C.通知时间:

The time between the reporting of the signal fail or degrade and the reception of the indication of this event by the entities that decide on the recovery switching operation(s).

从报告信号故障或降级到决定恢复切换操作的实体接收到该事件指示之间的时间。

D. Recovery Switching time:

D.恢复切换时间:

The time between the initialization of the recovery switching operation and the moment the normal traffic is selected from the recovery LSP/span.

从恢复切换操作初始化到从恢复LSP/span中选择正常通信量之间的时间。

E. Total Recovery time:

E.总恢复时间:

The total recovery time is defined as the sum of the detection, the correlation, the notification, and the recovery switching time.

总恢复时间定义为检测、相关性、通知和恢复切换时间之和。

F. Wait To Restore time:

F.等待恢复时间:

A period of time that must elapse after a recovered fault before an LSP/span can be used again to transport the normal traffic and/or to select the normal traffic from.

在LSP/span可再次用于传输正常通信量和/或从中选择正常通信量之前,故障恢复后必须经过的一段时间。

Note: the hold-off time is defined as the time between the reporting of signal fail or degrade, and the initialization of the recovery switching operation. This is useful when multiple layers of recovery are being used.

注:暂停时间定义为信号失效或降级报告与恢复切换操作初始化之间的时间。这在使用多层恢复时非常有用。

4.17. Impairment
4.17. 损害

A defect or performance degradation, which may lead to SF or SD trigger.

可能导致SF或SD触发器的缺陷或性能下降。

4.18. Recovery Ratio
4.18. 回收率

The quotient of the actual recovery bandwidth divided by the traffic bandwidth that is intended to be protected.

实际恢复带宽除以要保护的业务带宽的商。

4.19. Hitless Protection Switch-over
4.19. 无故障保护切换

Protection switch-over, which does not cause data loss, data duplication, data disorder, or bit errors upon recovery switching action.

保护切换,在恢复切换操作时不会导致数据丢失、数据重复、数据混乱或位错误。

4.20. Network Survivability
4.20. 网络生存性

The set of capabilities that allows a network to restore affected traffic in the event of a failure. The degree of survivability is determined by the network's capability to survive single and multiple failures.

允许网络在发生故障时恢复受影响流量的一组功能。生存能力的程度取决于网络承受单个和多个故障的能力。

4.21. Survivable Network
4.21. 生存网络

A network that is capable of restoring traffic in the event of a failure.

一种在发生故障时能够恢复通信量的网络。

4.22. Escalation
4.22. 升级

A network survivability action caused by the impossibility of the survivability function in lower layers.

由于较低层的生存性功能不可能实现而导致的网络生存性行为。

5. Recovery Phases
5. 恢复阶段

It is commonly accepted that recovery implies that the following generic operations need to be performed when an LSP/span or a node failure occurs:

通常认为,恢复意味着在发生LSP/span或节点故障时需要执行以下一般操作:

- Phase 1: Failure Detection

- 阶段1:故障检测

The action of detecting the impairment (defect of performance degradation) as a defect condition and the consequential activation of SF or SD trigger to the control plane (through internal interface with the transport plane). Thus, failure detection (which should occur at the transport layer closest to the failure) is the only phase that cannot be achieved by the control plane alone.

检测损伤(性能退化缺陷)作为缺陷条件的行为,以及SF或SD触发器对控制平面的相应激活(通过与传输平面的内部接口)。因此,故障检测(应发生在离故障最近的传输层)是控制平面无法单独实现的唯一阶段。

- Phase 2: Failure Localization (and Isolation)

- 阶段2:故障定位(和隔离)

Failure localization provides, to the deciding entity, information about the location (and thus the identity) of the transport plane entity that causes the LSP(s)/span(s) failure. The deciding entity can then make an accurate decision to achieve finer grained recovery switching action(s).

故障定位向决策实体提供导致LSP/span故障的传输平面实体的位置(以及身份)信息。然后,决策实体可以做出准确的决策,以实现更细粒度的恢复切换操作。

- Phase 3: Failure Notification

- 阶段3:故障通知

Failure notification phase is used 1) to inform intermediate nodes that LSP(s)/span(s) failure has occurred and has been detected and 2) to inform the recovery deciding entities (which can correspond to any intermediate or end-point of the failed LSP/span) that the corresponding LSP/span is not available.

故障通知阶段用于1)通知中间节点LSP/span故障已发生并已检测到,2)通知恢复决定实体(可对应于故障LSP/span的任何中间点或端点)相应的LSP/span不可用。

- Phase 4: Recovery (Protection or Restoration)

- 第4阶段:恢复(保护或恢复)

See Section 4.3.

见第4.3节。

- Phase 5: Reversion (Normalization)

- 阶段5:恢复(正常化)

See Section 4.11.

见第4.11节。

The combination of Failure Detection and Failure Localization and Notification is referred to as Fault Management.

故障检测、故障定位和通知的组合称为故障管理。

5.1. Entities Involved During Recovery
5.1. 恢复期间涉及的实体

The entities involved during the recovery operations can be defined as follows; these entities are parts of ingress, egress, and intermediate nodes, as defined previously:

恢复操作期间涉及的实体可定义如下:;如前所述,这些实体是入口、出口和中间节点的一部分:

A. Detecting Entity (Failure Detection):

A.检测实体(故障检测):

An entity that detects a failure or group of failures; thus providing a non-correlated list of failures.

检测故障或故障组的实体;因此,提供了一个不相关的故障列表。

B. Reporting Entity (Failure Correlation and Notification):

B.报告实体(故障关联和通知):

An entity that can make an intelligent decision on fault correlation and report the failure to the deciding entity. Fault reporting can be automatically performed by the deciding entity detecting the failure.

一种实体,可对故障相关性做出智能决策,并向决策实体报告故障。故障报告可由检测到故障的决策实体自动执行。

C. Deciding Entity (part of the failure recovery decision process):

C.决策实体(故障恢复决策过程的一部分):

An entity that makes the recovery decision or selects the recovery resources. This entity communicates the decision to the impacted LSPs/spans with the recovery actions to be performed.

作出恢复决策或选择恢复资源的实体。该实体向受影响的LSP/spans传达决策以及要执行的恢复操作。

D. Recovering Entity (part of the failure recovery activation process):

D.恢复实体(故障恢复激活过程的一部分):

An entity that participates in the recovery of the LSPs/spans.

参与LSP/spans恢复的实体。

The process of moving failed LSPs from a failed (working) span to a protection span must be initiated by one of the nodes that terminates the span, e.g., A or B. The deciding (and recovering) entity is referred to as the "master", while the other node is called the "slave" and corresponds to a recovering only entity.

将故障LSP从故障(工作)范围移动到保护范围的过程必须由终止该范围的其中一个节点(例如a或B)启动。决定(和恢复)实体称为“主”,而另一个节点称为“从”并对应于仅恢复的实体。

Note: The determination of the master and the slave may be based on configured information or protocol-specific requirements.

注:主设备和从设备的确定可能基于配置信息或协议特定要求。

6. Protection Schemes
6. 保护计划

This section clarifies the multiple possible protection schemes and the specific terminology for the protection.

本节阐明了多种可能的保护方案以及保护的具体术语。

6.1. 1+1 Protection
6.1. 1+1保护

1+1 protection has one working LSP/span, one protection LSP/span, and a permanent bridge. At the ingress node, the normal traffic is permanently bridged to both the working and protection LSP/span. At the egress node, the normal traffic is selected from the better of the two LSPs/spans.

1+1保护具有一个工作LSP/span、一个保护LSP/span和一个永久桥。在入口节点,正常流量永久桥接到工作和保护LSP/span。在出口节点,从两个LSP/跨度中的较好者中选择正常流量。

Due to the permanent bridging, the 1+1 protection does not allow an unprotected extra traffic signal to be provided.

由于永久桥接,1+1保护不允许提供未受保护的额外交通信号。

6.2. 1:N (N >= 1) Protection
6.2. 1:N(N>=1)保护

1:N protection has N working LSPs/spans that carry normal traffic and 1 protection LSP/span that may carry extra-traffic.

1:N保护具有N个工作LSP/跨度,可承载正常流量,1个保护LSP/跨度可承载额外流量。

At the ingress, the normal traffic is either permanently connected to its working LSP/span and may be connected to the protection LSP/span (case of broadcast bridge), or is connected to either its working LSP/span or the protection LSP/span (case of selector bridge). At the egress node, the normal traffic is selected from either its working or protection LSP/span.

在入口,正常通信量要么永久连接到其工作LSP/span,要么连接到保护LSP/span(广播网桥的情况),要么连接到其工作LSP/span或保护LSP/span(选择器网桥的情况)。在出口节点,从其工作或保护LSP/span中选择正常流量。

Unprotected extra traffic can be transported over the protection LSP/span whenever the protection LSP/span is not used to carry a normal traffic.

当保护LSP/span不用于承载正常流量时,可通过保护LSP/span传输未受保护的额外流量。

6.3. M:N (M, N > 1, N >= M) Protection
6.3. M:N(M,N>1,N>=M)保护

M:N protection has N working LSPs/spans carrying normal traffic and M protection LSP/span that may carry extra-traffic.

M:N保护有N个工作LSP/span承载正常流量,M个保护LSP/span可能承载额外流量。

At the ingress, the normal traffic is either permanently connected to its working LSP/span and may be connected to one of the protection LSPs/spans (case of broadcast bridge), or is connected to either its working LSP/span or one of the protection LSPs/spans (case of selector bridge). At the egress node, the normal traffic is selected from either its working or one of the protection LSP/span.

在入口,正常通信量或者永久连接到其工作LSP/span,并且可以连接到其中一个保护LSP/span(广播网桥的情况),或者连接到其工作LSP/span或者其中一个保护LSP/span(选择器网桥的情况)。在出口节点,从其工作或保护LSP/span之一中选择正常业务。

Unprotected extra traffic can be transported over the M protection LSP/span whenever the protection LSPs/spans is not used to carry a normal traffic.

当保护LSP/spans不用于承载正常流量时,可以通过M保护LSP/span传输未受保护的额外流量。

6.4. Notes on Protection Schemes
6.4. 保护计划须知

All protection types are either uni- or bi-directional; obviously, the latter applies only to bi-directional LSPs/spans and requires coordination between the ingress and egress node during protection switching.

所有保护类型为单向或双向;显然,后者仅适用于双向LSP/跨度,并且在保护切换期间需要入口和出口节点之间的协调。

All protection types except 1+1 unidirectional protection switching require a communication channel between the ingress and the egress node.

除1+1单向保护切换外,所有保护类型都需要入口和出口节点之间的通信信道。

In the GMPLS context, span protection refers to the full or partial span recovery of the LSPs carried over that span (see Section 4.15).

在GMPLS上下文中,量程保护指的是在该量程上进行的LSP的全部或部分量程恢复(见第4.15节)。

7. Restoration Schemes
7. 修复计划

This section clarifies the multiple possible restoration schemes and the specific terminology for the restoration.

本节阐明了多种可能的恢复方案以及恢复的具体术语。

7.1. Pre-Planned LSP Restoration
7.1. 预先计划的LSP恢复

Also referred to as pre-planned LSP re-routing. Before failure detection and/or notification, one or more restoration LSPs are instantiated between the same ingress-egress node pair as the working LSP. Note that the restoration resources must be pre-computed, must be signaled, and may be selected a priori, but may not cross-connected. Thus, the restoration LSP is not able to carry any extra-traffic.

也称为预先计划的LSP重新路由。在故障检测和/或通知之前,在与工作LSP相同的入口-出口节点对之间实例化一个或多个恢复LSP。注意,恢复资源必须预先计算,必须发出信号,并且可以预先选择,但不能交叉连接。因此,恢复LSP不能承载任何额外的业务。

The complete establishment of the restoration LSP (i.e., activation) occurs only after failure detection and/or notification of the working LSP and requires some additional restoration signaling. Therefore, this mechanism protects against working LSP failure(s) but requires activation of the restoration LSP after failure occurrence. After the ingress node has activated the restoration LSP, the latter can carry the normal traffic.

恢复LSP的完全建立(即激活)仅在故障检测和/或工作LSP的通知之后发生,并且需要一些额外的恢复信令。因此,此机制可防止工作LSP故障,但需要在故障发生后激活恢复LSP。入口节点激活恢复LSP后,恢复LSP可以承载正常流量。

Note: when each working LSP is recoverable by exactly one restoration LSP, one refers also to 1:1 (pre-planned) re-routing without extra-traffic.

注意:当每个工作LSP仅可由一个恢复LSP恢复时,一个也指1:1(预先计划的)重新路由,无需额外流量。

7.1.1. Shared-Mesh Restoration
7.1.1. 共享网格恢复

"Shared-mesh" restoration is defined as a particular case of pre-planned LSP re-routing that reduces the restoration resource requirements by allowing multiple restoration LSPs (initiated from distinct ingress nodes) to share common resources (including links and nodes.)

“共享网格”恢复被定义为预先规划的LSP重新路由的一种特殊情况,通过允许多个恢复LSP(从不同的入口节点启动)共享公共资源(包括链路和节点),减少了恢复资源需求

7.2. LSP Restoration
7.2. LSP恢复

Also referred to as LSP re-routing. The ingress node switches the normal traffic to an alternate LSP that is signaled and fully established (i.e., cross-connected) after failure detection and/or notification. The alternate LSP path may be computed after failure detection and/or notification. In this case, one also refers to "Full LSP Re-routing."

也称为LSP重路由。入口节点将正常业务切换到备用LSP,该备用LSP在故障检测和/或通知后发出信号并完全建立(即交叉连接)。备用LSP路径可在故障检测和/或通知之后计算。在这种情况下,也可以称为“完整LSP重路由”

The alternate LSP is signaled from the ingress node and may reuse the intermediate node's resources of the working LSP under failure condition (and may also include additional intermediate nodes.)

备用LSP从入口节点发出信号,并且可以在故障条件下重用中间节点的工作LSP资源(并且还可以包括额外的中间节点)

7.2.1. Hard LSP Restoration
7.2.1. 硬LSP恢复

Also referred to as hard LSP re-routing. A re-routing operation where the LSP is released before the full establishment of an alternate LSP (i.e., break-before-make).

也称为硬LSP重路由。一种重路由操作,其中在完全建立备用LSP(即先断后通)之前释放LSP。

7.2.2. Soft LSP Restoration
7.2.2. 软LSP恢复

Also referred to as soft LSP re-routing. A re-routing operation where the LSP is released after the full establishment of an alternate LSP (i.e., make-before-break).

也称为软LSP重路由。在完全建立备用LSP(即先通后断)后释放LSP的一种重路由操作。

8. Security Considerations
8. 安全考虑

Security considerations are detailed in [RFC4428] and [RFC4426].

安全注意事项详见[RFC4428]和[RFC4426]。

9. References
9. 工具书类
9.1. Normative References
9.1. 规范性引用文件

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2119]Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,1997年3月。

9.2. Informative References
9.2. 资料性引用

[RFC3386] Lai, W. and D. McDysan, "Network Hierarchy and Multilayer Survivability", RFC 3386, November 2002.

[RFC3386]Lai,W.和D.McDysan,“网络层次结构和多层生存能力”,RFC 3386,2002年11月。

[RFC3945] Mannie, E., "Generalized Multi-Protocol Label Switching (GMPLS) Architecture", RFC 3945, October 2004.

[RFC3945]Mannie,E.“通用多协议标签交换(GMPLS)体系结构”,RFC 39452004年10月。

[RFC4426] Lang, J., Rajagopalan B., and D.Papadimitriou, Editors, "Generalized Multiprotocol Label Switching (GMPLS) Recovery Functional Specification", RFC 4426, March 2006.

[RFC4426]Lang,J.,Rajagopalan B.,和D.Papadimitriou,编辑,“通用多协议标签交换(GMPLS)恢复功能规范”,RFC 4426,2006年3月。

[RFC4428] Papadimitriou D. and E.Mannie, Editors, "Analysis of Generalized Multi-Protocol Label Switching (GMPLS)-based Recovery Mechanisms (including Protection and Restoration)", RFC 4428, March 2006.

《基于多标签的保护和恢复》(PLS-C4428)和《基于多标签的保护和恢复》,2006年3月28日。

For information on the availability of the following documents, please see http://www.itu.int

有关下列文件的可用性信息,请参见http://www.itu.int

[G.808.1] ITU-T, "Generic Protection Switching - Linear trail and subnetwork protection," Recommendation G.808.1, December 2003.

[G.808.1]ITU-T,“通用保护交换-线性路径和子网络保护”,建议G.808.1,2003年12月。

[G.841] ITU-T, "Types and Characteristics of SDH Network Protection Architectures," Recommendation G.841, October 1998.

[G.841]ITU-T,“SDH网络保护体系结构的类型和特征”,建议G.841,1998年10月。

10. Acknowledgements
10. 致谢

Many thanks to Adrian Farrel for having thoroughly review this document.

非常感谢Adrian Farrel对本文件进行了全面审查。

Editors' Addresses

编辑地址

Eric Mannie Perceval Rue Tenbosch, 9 1000 Brussels Belgium

Eric Mannie Perceval Rue Tenbosch,9 1000比利时布鲁塞尔

   Phone: +32-2-6409194
   EMail: eric.mannie@perceval.net
        
   Phone: +32-2-6409194
   EMail: eric.mannie@perceval.net
        

Dimitri Papadimitriou Alcatel Francis Wellesplein, 1 B-2018 Antwerpen, Belgium

迪米特里·帕帕迪米特里奥·阿尔卡特·弗朗西斯·韦勒斯普林,1 B-2018比利时安特卫普

   Phone: +32 3 240-8491
   EMail: dimitri.papadimitriou@alcatel.be
        
   Phone: +32 3 240-8491
   EMail: dimitri.papadimitriou@alcatel.be
        

Full Copyright Statement

完整版权声明

Copyright (C) The Internet Society (2006).

版权所有(C)互联网协会(2006年)。

This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.

本文件受BCP 78中包含的权利、许可和限制的约束,除其中规定外,作者保留其所有权利。

This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

本文件及其包含的信息是按“原样”提供的,贡献者、他/她所代表或赞助的组织(如有)、互联网协会和互联网工程任务组不承担任何明示或暗示的担保,包括但不限于任何保证,即使用本文中的信息不会侵犯任何权利,或对适销性或特定用途适用性的任何默示保证。

Intellectual Property

知识产权

The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79.

IETF对可能声称与本文件所述技术的实施或使用有关的任何知识产权或其他权利的有效性或范围,或此类权利下的任何许可可能或可能不可用的程度,不采取任何立场;它也不表示它已作出任何独立努力来确定任何此类权利。有关RFC文件中权利的程序信息,请参见BCP 78和BCP 79。

Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.

向IETF秘书处披露的知识产权副本和任何许可证保证,或本规范实施者或用户试图获得使用此类专有权利的一般许可证或许可的结果,可从IETF在线知识产权存储库获取,网址为http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.

IETF邀请任何相关方提请其注意任何版权、专利或专利申请,或其他可能涵盖实施本标准所需技术的专有权利。请将信息发送至IETF的IETF-ipr@ietf.org.

Acknowledgement

确认

Funding for the RFC Editor function is provided by the IETF Administrative Support Activity (IASA).

RFC编辑器功能的资金由IETF行政支持活动(IASA)提供。