Internet Engineering Task Force (IETF)                  V. Dolmatov, Ed.
Request for Comments: 5933                                   A. Chuprina
Category: Standards Track                                     I. Ustinov
ISSN: 2070-1721                                           Cryptocom Ltd.
                                                               July 2010
        
Internet Engineering Task Force (IETF)                  V. Dolmatov, Ed.
Request for Comments: 5933                                   A. Chuprina
Category: Standards Track                                     I. Ustinov
ISSN: 2070-1721                                           Cryptocom Ltd.
                                                               July 2010
        

Use of GOST Signature Algorithms in DNSKEY and RRSIG Resource Records for DNSSEC

在DNSSEC的DNSKEY和RRSIG资源记录中使用GOST签名算法

Abstract

摘要

This document describes how to produce digital signatures and hash functions using the GOST R 34.10-2001 and GOST R 34.11-94 algorithms for DNSKEY, RRSIG, and DS resource records, for use in the Domain Name System Security Extensions (DNSSEC).

本文档描述了如何使用GOST R 34.10-2001和GOST R 34.11-94算法为DNSKEY、RRSIG和DS资源记录生成数字签名和哈希函数,以用于域名系统安全扩展(DNSSEC)。

Status of This Memo

关于下段备忘

This is an Internet Standards Track document.

这是一份互联网标准跟踪文件。

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 5741.

本文件是互联网工程任务组(IETF)的产品。它代表了IETF社区的共识。它已经接受了公众审查,并已被互联网工程指导小组(IESG)批准出版。有关互联网标准的更多信息,请参见RFC 5741第2节。

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc5933.

有关本文件当前状态、任何勘误表以及如何提供反馈的信息,请访问http://www.rfc-editor.org/info/rfc5933.

Copyright Notice

版权公告

Copyright (c) 2010 IETF Trust and the persons identified as the document authors. All rights reserved.

版权所有(c)2010 IETF信托基金和确定为文件作者的人员。版权所有。

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

本文件受BCP 78和IETF信托有关IETF文件的法律规定的约束(http://trustee.ietf.org/license-info)自本文件出版之日起生效。请仔细阅读这些文件,因为它们描述了您对本文件的权利和限制。从本文件中提取的代码组件必须包括信托法律条款第4.e节中所述的简化BSD许可证文本,并提供简化BSD许可证中所述的无担保。

Table of Contents

目录

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . 2
     1.1.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . 3
   2.  DNSKEY Resource Records . . . . . . . . . . . . . . . . . . . . 3
     2.1.  Using a Public Key with Existing Cryptographic
           Libraries . . . . . . . . . . . . . . . . . . . . . . . . . 3
     2.2.  GOST DNSKEY RR Example  . . . . . . . . . . . . . . . . . . 4
   3.  RRSIG Resource Records  . . . . . . . . . . . . . . . . . . . . 4
     3.1.  RRSIG RR Example  . . . . . . . . . . . . . . . . . . . . . 5
   4.  DS Resource Records . . . . . . . . . . . . . . . . . . . . . . 5
     4.1.  DS RR Example . . . . . . . . . . . . . . . . . . . . . . . 5
   5.  Deployment Considerations . . . . . . . . . . . . . . . . . . . 6
     5.1.  Key Sizes . . . . . . . . . . . . . . . . . . . . . . . . . 6
     5.2.  Signature Sizes . . . . . . . . . . . . . . . . . . . . . . 6
     5.3.  Digest Sizes  . . . . . . . . . . . . . . . . . . . . . . . 6
   6.  Implementation Considerations . . . . . . . . . . . . . . . . . 6
     6.1.  Support for GOST Signatures . . . . . . . . . . . . . . . . 6
     6.2.  Support for NSEC3 Denial of Existence . . . . . . . . . . . 6
   7.  Security Considerations . . . . . . . . . . . . . . . . . . . . 6
   8.  IANA Considerations . . . . . . . . . . . . . . . . . . . . . . 7
   9.  Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . 7
   10. References  . . . . . . . . . . . . . . . . . . . . . . . . . . 7
     10.1. Normative References  . . . . . . . . . . . . . . . . . . . 7
     10.2. Informative References  . . . . . . . . . . . . . . . . . . 8
        
   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . 2
     1.1.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . 3
   2.  DNSKEY Resource Records . . . . . . . . . . . . . . . . . . . . 3
     2.1.  Using a Public Key with Existing Cryptographic
           Libraries . . . . . . . . . . . . . . . . . . . . . . . . . 3
     2.2.  GOST DNSKEY RR Example  . . . . . . . . . . . . . . . . . . 4
   3.  RRSIG Resource Records  . . . . . . . . . . . . . . . . . . . . 4
     3.1.  RRSIG RR Example  . . . . . . . . . . . . . . . . . . . . . 5
   4.  DS Resource Records . . . . . . . . . . . . . . . . . . . . . . 5
     4.1.  DS RR Example . . . . . . . . . . . . . . . . . . . . . . . 5
   5.  Deployment Considerations . . . . . . . . . . . . . . . . . . . 6
     5.1.  Key Sizes . . . . . . . . . . . . . . . . . . . . . . . . . 6
     5.2.  Signature Sizes . . . . . . . . . . . . . . . . . . . . . . 6
     5.3.  Digest Sizes  . . . . . . . . . . . . . . . . . . . . . . . 6
   6.  Implementation Considerations . . . . . . . . . . . . . . . . . 6
     6.1.  Support for GOST Signatures . . . . . . . . . . . . . . . . 6
     6.2.  Support for NSEC3 Denial of Existence . . . . . . . . . . . 6
   7.  Security Considerations . . . . . . . . . . . . . . . . . . . . 6
   8.  IANA Considerations . . . . . . . . . . . . . . . . . . . . . . 7
   9.  Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . 7
   10. References  . . . . . . . . . . . . . . . . . . . . . . . . . . 7
     10.1. Normative References  . . . . . . . . . . . . . . . . . . . 7
     10.2. Informative References  . . . . . . . . . . . . . . . . . . 8
        
1. Introduction
1. 介绍

The Domain Name System (DNS) is the global hierarchical distributed database for Internet Naming. The DNS has been extended to use cryptographic keys and digital signatures for the verification of the authenticity and integrity of its data. RFC 4033 [RFC4033], RFC 4034 [RFC4034], and RFC 4035 [RFC4035] describe these DNS Security Extensions, called DNSSEC.

域名系统(DNS)是用于Internet命名的全局分层分布式数据库。DNS已扩展到使用加密密钥和数字签名来验证其数据的真实性和完整性。RFC 4033[RFC4033]、RFC 4034[RFC4034]和RFC 4035[RFC4035]描述了这些DNS安全扩展,称为DNSSEC。

RFC 4034 describes how to store DNSKEY and RRSIG resource records, and specifies a list of cryptographic algorithms to use. This document extends that list with the signature and hash algorithms GOST R 34.10-2001 ([GOST3410], [RFC5832]) and GOST R 34.11-94 ([GOST3411], [RFC5831]), and specifies how to store DNSKEY data and how to produce RRSIG resource records with these algorithms.

RFC 4034描述了如何存储DNSKEY和RRSIG资源记录,并指定了要使用的加密算法列表。本文档使用签名和哈希算法GOST R 34.10-2001([GOST3410],[RFC5832])和GOST R 34.11-94([GOST3411],[RFC5831])扩展了该列表,并指定了如何存储DNSKEY数据以及如何使用这些算法生成RRSIG资源记录。

Familiarity with DNSSEC and with GOST signature and hash algorithms is assumed in this document.

本文件假设熟悉DNSSEC和GOST签名和哈希算法。

The term "GOST" is not officially defined, but is usually used to refer to the collection of the Russian cryptographic algorithms GOST R 34.10-2001 [RFC5832], GOST R 34.11-94 [RFC5831], and

术语“GOST”没有正式定义,但通常用于指俄罗斯密码算法GOST R 34.10-2001[RFC5832]、GOST R 34.11-94[RFC5831]和

GOST 28147-89 [RFC5830]. Since GOST 28147-89 is not used in DNSSEC, "GOST" will only refer to GOST R 34.10-2001 and GOST R 34.11-94 in this document.

GOST 28147-89[RFC5830]。由于DNSSEC未使用GOST 28147-89,“GOST”在本文件中仅指GOST R 34.10-2001和GOST R 34.11-94。

1.1. Terminology
1.1. 术语

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

本文件中的关键词“必须”、“不得”、“必需”、“应”、“不应”、“应”、“不应”、“建议”、“可”和“可选”应按照[RFC2119]中所述进行解释。

2. DNSKEY Resource Records
2. DNSKEY资源记录

The format of the DNSKEY RR can be found in RFC 4034 [RFC4034].

DNSKEY RR的格式可在RFC 4034[RFC4034]中找到。

GOST R 34.10-2001 public keys are stored with the algorithm number 12.

GOST R 34.10-2001公钥与算法编号12一起存储。

The wire format of the public key is compatible with RFC 4491 [RFC4491]:

公钥的有线格式与RFC 4491[RFC4491]兼容:

   According to [GOST3410] and [RFC5832], a public key is a point on the
   elliptic curve Q = (x,y).
        
   According to [GOST3410] and [RFC5832], a public key is a point on the
   elliptic curve Q = (x,y).
        

The wire representation of a public key MUST contain 64 octets, where the first 32 octets contain the little-endian representation of x and the second 32 octets contain the little-endian representation of y.

公钥的有线表示必须包含64个八位字节,其中前32个八位字节包含x的小端表示,后32个八位字节包含y的小端表示。

Corresponding public key parameters are those identified by id-GostR3410-2001-CryptoPro-A-ParamSet (1.2.643.2.2.35.1) [RFC4357], and the digest parameters are those identified by id-GostR3411-94-CryptoProParamSet (1.2.643.2.2.30.1) [RFC4357].

相应的公钥参数由id-GostR3410-2001-CryptoPro-A-ParamSet(1.2.643.2.2.35.1)[RFC4357]标识,摘要参数由id-GostR3411-94-CryptoProParamSet(1.2.643.2.2.30.1)[RFC4357]标识。

2.1. Using a Public Key with Existing Cryptographic Libraries
2.1. 对现有加密库使用公钥

At the time of this writing, existing GOST-aware cryptographic libraries are capable of reading GOST public keys via a generic X509 API if the key is encoded according to RFC 4491 [RFC4491], Section 2.3.2.

在撰写本文时,如果根据RFC 4491[RFC4491]第2.3.2节对GOST公钥进行编码,则现有的GOST感知加密库能够通过通用X509 API读取GOST公钥。

To make this encoding from the wire format of a GOST public key with the parameters used in this document, prepend the 64 octets of key data with the following 37-byte sequence:

要使用本文档中使用的参数从GOST公钥的有线格式进行此编码,请使用以下37字节序列预加64个八位字节的密钥数据:

0x30 0x63 0x30 0x1c 0x06 0x06 0x2a 0x85 0x03 0x02 0x02 0x13 0x30 0x12 0x06 0x07 0x2a 0x85 0x03 0x02 0x02 0x23 0x01 0x06 0x07 0x2a 0x85 0x03 0x02 0x02 0x1e 0x01 0x03 0x43 0x00 0x04 0x40

0x30 0x63 0x30 0x1c 0x06 0x06 0x2a 0x85 0x03 0x02 0x02 0x13 0x30 0x12 0x06 0x07 0x2a 0x85 0x03 0x02 0x02 0x02 0x23 0x01 0x06 0x07 0x2a 0x85 0x03 0x02 0x02 0x1e 0x01 0x03 0x43 0x00 0x04 0x40

2.2. GOST DNSKEY RR Example
2.2. GOST DNSKEY RR示例

Given a private key with the following value (the value of the GostAsn1 field is split here into two lines to simplify reading; in the private key file, it must be in one line):

给定一个具有以下值的私钥(此处将GostAsn1字段的值分成两行以简化读取;在私钥文件中,它必须在一行中):

      Private-key-format: v1.2
      Algorithm: 12 (ECC-GOST)
      GostAsn1: MEUCAQAwHAYGKoUDAgITMBIGByqFAwICIwEGByqFAwICHgEEIgQg/9M
                iXtXKg9FDXDN/R9CmVhJDyuzRAIgh4tPwCu4NHIs=
        
      Private-key-format: v1.2
      Algorithm: 12 (ECC-GOST)
      GostAsn1: MEUCAQAwHAYGKoUDAgITMBIGByqFAwICIwEGByqFAwICHgEEIgQg/9M
                iXtXKg9FDXDN/R9CmVhJDyuzRAIgh4tPwCu4NHIs=
        

The following DNSKEY RR stores a DNS zone key for example.net:

以下DNSKEY RR存储DNS区域密钥,例如.net:

      example.net. 86400 IN DNSKEY 256 3 12 (
                                   aRS/DcPWGQj2wVJydT8EcAVoC0kXn5pDVm2I
                                   MvDDPXeD32dsSKcmq8KNVzigjL4OXZTV+t/6
                                   w4X1gpNrZiC01g==
                                   ) ; key id = 59732
        
      example.net. 86400 IN DNSKEY 256 3 12 (
                                   aRS/DcPWGQj2wVJydT8EcAVoC0kXn5pDVm2I
                                   MvDDPXeD32dsSKcmq8KNVzigjL4OXZTV+t/6
                                   w4X1gpNrZiC01g==
                                   ) ; key id = 59732
        
3. RRSIG Resource Records
3. 资源记录

The value of the signature field in the RRSIG RR follows RFC 4490 [RFC4490] and is calculated as follows. The values for the RDATA fields that precede the signature data are specified in RFC 4034 [RFC4034].

RRSIG RR中签名字段的值遵循RFC 4490[RFC4490],计算如下。RFC 4034[RFC4034]中指定了签名数据之前的RDATA字段的值。

hash = GOSTR3411(data)

哈希=GOSTR3411(数据)

where "data" is the wire format data of the resource record set that is signed, as specified in RFC 4034 [RFC4034].

其中“data”是RFC 4034[RFC4034]中指定的已签名资源记录集的有线格式数据。

The hash MUST be calculated with GOST R 34.11-94 parameters identified by id-GostR3411-94-CryptoProParamSet [RFC4357].

必须使用id-GostR3411-94-CryptoProParamSet[RFC4357]标识的GOST R 34.11-94参数计算哈希值。

The signature is calculated from the hash according to the GOST R 34.10-2001 standard, and its wire format is compatible with RFC 4490 [RFC4490].

签名根据GOST R 34.10-2001标准从散列中计算,其有线格式与RFC 4490[RFC4490]兼容。

Quoting RFC 4490:

引用RFC 4490:

"The signature algorithm GOST R 34.10-2001 generates a digital signature in the form of two 256-bit numbers, r and s. Its octet string representation consists of 64 octets, where the first 32 octets contain the big-endian representation of s and the second 32 octets contain the big-endian representation of r".

“签名算法GOST R 34.10-2001以两个256位数字R和s的形式生成数字签名。其八进制字符串表示法由64个八进制组成,其中前32个八进制包含s的大端表示法,后32个八进制包含R的大端表示法。”。

3.1. RRSIG RR Example
3.1. RRSIG-RR示例

With the private key from Section 2.2, sign the following RRSet, consisting of one A record:

使用第2.2节中的私钥,签署以下RRSet,包括一个A记录:

www.example.net. 3600 IN A 192.0.2.1

www.example.net。192.0.2.1版本中的3600

Setting the inception date to 2000-01-01 00:00:00 UTC and the expiration date to 2030-01-01 00:00:00 UTC, the following signature RR will be valid:

将起始日期设置为2000-01-01 00:00:00 UTC,将到期日期设置为2030-01-01 00:00:00 UTC,以下签名RR将有效:

www.example.net. 3600 IN RRSIG A 12 3 3600 20300101000000 ( 20000101000000 59732 example.net. 7vzzz6iLOmvtjs5FjVjSHT8XnRKFY15ki6Kp kNPkUnS8iIns0Kv4APT+D9ibmHhGri6Sfbyy zi67+wBbbW/jrA== )

www.example.net。3600英寸RRSIG A 12 3 3600 20300101000000(200001000000 59732 example.net.7vzzz6iLOmvtjs5FjVjSHT8XnRKFY15ki6Kp kNPkUnS8iIns0Kv4APT+D9IBMHHGRI6SFBYZI67+wBbbW/jrA==)

Note: The ECC-GOST signature algorithm uses random data, so the actual computed signature value will differ between signature calculations.

注意:ECC-GOST签名算法使用随机数据,因此实际计算的签名值在签名计算中会有所不同。

4. DS Resource Records
4. DS资源记录

The GOST R 34.11-94 digest algorithm is denoted in DS RRs by the digest type 3. The wire format of a digest value is compatible with RFC 4490 [RFC4490], that is, the digest is in little-endian representation.

GOST R 34.11-94摘要算法在DS RRs中由摘要类型3表示。摘要值的wire格式与RFC 4490[RFC4490]兼容,也就是说,摘要采用小尾端表示。

The digest MUST always be calculated with GOST R 34.11-94 parameters identified by id-GostR3411-94-CryptoProParamSet [RFC4357].

必须始终使用id-GostR3411-94-CryptoProParamSet[RFC4357]标识的GOST R 34.11-94参数计算摘要。

4.1. DS RR Example
4.1. DS-RR示例

For Key Signing Key (KSK):

对于密钥签名密钥(KSK):

      example.net. 86400   DNSKEY  257 3 12 (
                                   LMgXRHzSbIJGn6i16K+sDjaDf/k1o9DbxScO
                                   gEYqYS/rlh2Mf+BRAY3QHPbwoPh2fkDKBroF
                                   SRGR7ZYcx+YIQw==
                                   ) ; key id = 40692
        
      example.net. 86400   DNSKEY  257 3 12 (
                                   LMgXRHzSbIJGn6i16K+sDjaDf/k1o9DbxScO
                                   gEYqYS/rlh2Mf+BRAY3QHPbwoPh2fkDKBroF
                                   SRGR7ZYcx+YIQw==
                                   ) ; key id = 40692
        

The DS RR will be

DS RR将是

example.net. 3600 IN DS 40692 12 3 ( 22261A8B0E0D799183E35E24E2AD6BB58533CBA7E3B14D659E9CA09B 2071398F )

例如.net。DS 40692 12 3中的3600(22261A8B0E0D799183E35E24E2AD6BB5853CBA7E3B14D659E9CA09B 2071398F)

5. Deployment Considerations
5. 部署注意事项
5.1. Key Sizes
5.1. 关键尺寸

According to RFC 4357 [RFC4357], the key size of GOST public keys MUST be 512 bits.

根据RFC 4357[RFC4357],GOST公钥的密钥大小必须为512位。

5.2. Signature Sizes
5.2. 签名尺寸

According to the GOST R 34.10-2001 digital signature algorithm specification ([GOST3410], [RFC5832]), the size of a GOST signature is 512 bits.

根据GOST R 34.10-2001数字签名算法规范([GOST3410],[RFC5832]),GOST签名的大小为512位。

5.3. Digest Sizes
5.3. 摘要大小

According to GOST R 34.11-94 ([GOST3411], [RFC5831]), the size of a GOST digest is 256 bits.

根据GOST R 34.11-94([GOST3411],[RFC5831]),GOST摘要的大小为256位。

6. Implementation Considerations
6. 实施考虑
6.1. Support for GOST Signatures
6.1. 支持GOST签名

DNSSEC-aware implementations MAY be able to support RRSIG and DNSKEY resource records created with the GOST algorithms as defined in this document.

支持DNSSEC的实现可能支持使用本文档中定义的GOST算法创建的RRSIG和DNSKEY资源记录。

6.2. Support for NSEC3 Denial of Existence
6.2. 支持NSEC3拒绝存在

Any DNSSEC-GOST implementation MUST support both NSEC [RFC4035] and NSEC3 [RFC5155].

任何DNSSEC-GOST实现必须同时支持NSEC[RFC4035]和NSEC3[RFC5155]。

7. Security Considerations
7. 安全考虑

Currently, the cryptographic resistance of the GOST R 34.10-2001 digital signature algorithm is estimated as 2**128 operations of multiple elliptic curve point computations on prime modulus of order 2**256.

目前,GOST R 34.10-2001数字签名算法的抗密码学性能估计为2**256阶素数模上多个椭圆曲线点计算的2**128次运算。

Currently, the cryptographic resistance of the GOST R 34.11-94 hash algorithm is estimated as 2**128 operations of computations of a step hash function. (There is a known method to reduce this estimate to 2**105 operations, but it demands padding the colliding message with 1024 random bit blocks each of 256-bit length; thus, it cannot be used in any practical implementation).

目前,GOST R 34.11-94散列算法的密码抵抗估计为步骤散列函数计算的2**128操作。(有一种已知的方法可以将此估计值减少到2**105操作,但它需要使用1024个随机位块(每个块的长度为256位)填充冲突消息;因此,它不能用于任何实际实现)。

8. IANA Considerations
8. IANA考虑

This document updates the IANA registry "DNS Security Algorithm Numbers" [RFC4034]. The following entries have been added to the registry:

本文档更新IANA注册表“DNS安全算法编号”[RFC4034]。已将以下条目添加到注册表中:

Zone Trans. Value Algorithm Mnemonic Signing Sec. References Status 12 GOST R 34.10-2001 ECC-GOST Y * RFC 5933 OPTIONAL

区域转换。值算法助记符签名秒。参考状态12 GOST R 34.10-2001 ECC-GOST Y*RFC 5933可选

This document updates the RFC 4034 Digest Types assignment ([RFC4034], Section A.2) by adding the value and status for the GOST R 34.11-94 algorithm:

本文档通过添加GOST R 34.11-94算法的值和状态来更新RFC 4034摘要类型分配([RFC4034],第A.2节):

Value Algorithm Status 3 GOST R 34.11-94 OPTIONAL

数值算法状态3 GOST R 34.11-94可选

9. Acknowledgments
9. 致谢

This document is a minor extension to RFC 4034 [RFC4034]. Also, we tried to follow the documents RFC 3110 [RFC3110], RFC 4509 [RFC4509], and RFC 4357 [RFC4357] for consistency. The authors of and contributors to these documents are gratefully acknowledged for their hard work.

本文档是RFC 4034[RFC4034]的一个小扩展。此外,我们还尝试遵循RFC 3110[RFC3110]、RFC 4509[RFC4509]和RFC 4357[RFC4357]等文档,以确保一致性。感谢这些文件的作者和贡献者的辛勤工作。

The following people provided additional feedback, text, and valuable assistance: Dmitry Burkov, Jaap Akkerhuis, Olafur Gundmundsson, Jelte Jansen, and Wouter Wijngaards.

以下人员提供了额外的反馈、文本和宝贵的帮助:Dmitry Burkov、Jaap Akkerhuis、Olafur Gundmundsson、Jelte Jansen和Wouter Wijngaards。

10. References
10. 工具书类
10.1. Normative References
10.1. 规范性引用文件

[GOST3410] "Information technology. Cryptographic data security. Signature and verification processes of [electronic] digital signature.", GOST R 34.10-2001, Gosudarstvennyi Standard of Russian Federation, Government Committee of Russia for Standards, 2001. (In Russian).

[GOST3410]“信息技术.加密数据安全.[电子]数字签名的签名和验证过程”,GOST R 34.10-2001,俄罗斯联邦GOSUDARTVENNYI标准,俄罗斯政府标准委员会,2001年。(俄语)。

[GOST3411] "Information technology. Cryptographic data security. Hashing function.", GOST R 34.11-94, Gosudarstvennyi Standard of Russian Federation, Government Committee of Russia for Standards, 1994. (In Russian).

[GOST3411]“信息技术.加密数据安全.散列函数”,GOST R 34.11-94,俄罗斯联邦Gosudarstvenyi标准,俄罗斯政府标准委员会,1994年。(俄语)。

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2119]Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,1997年3月。

[RFC3110] Eastlake 3rd, D., "RSA/SHA-1 SIGs and RSA KEYs in the Domain Name System (DNS)", RFC 3110, May 2001.

[RFC3110]Eastlake 3rd,D.,“域名系统(DNS)中的RSA/SHA-1 SIGs和RSA密钥”,RFC 3110,2001年5月。

[RFC4033] Arends, R., Austein, R., Larson, M., Massey, D., and S. Rose, "DNS Security Introduction and Requirements", RFC 4033, March 2005.

[RFC4033]Arends,R.,Austein,R.,Larson,M.,Massey,D.,和S.Rose,“DNS安全介绍和要求”,RFC 4033,2005年3月。

[RFC4034] Arends, R., Austein, R., Larson, M., Massey, D., and S. Rose, "Resource Records for the DNS Security Extensions", RFC 4034, March 2005.

[RFC4034]Arends,R.,Austein,R.,Larson,M.,Massey,D.,和S.Rose,“DNS安全扩展的资源记录”,RFC 40342005年3月。

[RFC4035] Arends, R., Austein, R., Larson, M., Massey, D., and S. Rose, "Protocol Modifications for the DNS Security Extensions", RFC 4035, March 2005.

[RFC4035]Arends,R.,Austein,R.,Larson,M.,Massey,D.,和S.Rose,“DNS安全扩展的协议修改”,RFC 4035,2005年3月。

[RFC4357] Popov, V., Kurepkin, I., and S. Leontiev, "Additional Cryptographic Algorithms for Use with GOST 28147-89, GOST R 34.10-94, GOST R 34.10-2001, and GOST R 34.11-94 Algorithms", RFC 4357, January 2006.

[RFC4357]Popov,V.,Kurepkin,I.,和S.Leontiev,“用于GOST 28147-89,GOST R 34.10-94,GOST R 34.10-2001和GOST R 34.11-94算法的其他加密算法”,RFC 4357,2006年1月。

[RFC4490] Leontiev, S., Ed. and G. Chudov, Ed., "Using the GOST 28147-89, GOST R 34.11-94, GOST R 34.10-94, and GOST R 34.10-2001 Algorithms with Cryptographic Message Syntax (CMS)", RFC 4490, May 2006.

[RFC4490]Leontiev,S.,Ed.和G.Chudov,Ed.“使用GOST 28147-89、GOST R 34.11-94、GOST R 34.10-94和GOST R 34.10-2001加密消息语法算法(CMS)”,RFC 4490,2006年5月。

[RFC4491] Leontiev, S., Ed. and D. Shefanovski, Ed., "Using the GOST R 34.10-94, GOST R 34.10-2001, and GOST R 34.11-94 Algorithms with the Internet X.509 Public Key Infrastructure Certificate and CRL Profile", RFC 4491, May 2006.

[RFC4491]Leontiev,S.,Ed.和D.Shefanovski,Ed.,“将GOST R 34.10-94、GOST R 34.10-2001和GOST R 34.11-94算法与Internet X.509公钥基础设施证书和CRL配置文件结合使用”,RFC 4491,2006年5月。

[RFC5155] Laurie, B., Sisson, G., Arends, R., and D. Blacka, "DNS Security (DNSSEC) Hashed Authenticated Denial of Existence", RFC 5155, March 2008.

[RFC5155]Laurie,B.,Sisson,G.,Arends,R.,和D.Blacka,“DNS安全(DNSSEC)哈希认证拒绝存在”,RFC 51552008年3月。

10.2. Informative References
10.2. 资料性引用

[RFC4509] Hardaker, W., "Use of SHA-256 in DNSSEC Delegation Signer (DS) Resource Records (RRs)", RFC 4509, May 2006.

[RFC4509]Hardaker,W.“SHA-256在DNSSEC委托签署人(DS)资源记录(RRs)中的使用”,RFC 4509,2006年5月。

[RFC5830] Dolmatov, V., Ed., "GOST 28147-89: Encryption, Decryption, and Message Authentication Code (MAC) Algorithms", RFC 5830, March 2010.

[RFC5830]Dolmatov,V.,Ed.“GOST 28147-89:加密、解密和消息认证码(MAC)算法”,RFC 5830,2010年3月。

[RFC5831] Dolmatov, V., Ed., "GOST R 34.11-94: Hash Function Algorithm", RFC 5831, March 2010.

[RFC5831]多尔马托夫,V.,编辑,“GOST R 34.11-94:哈希函数算法”,RFC 58312010年3月。

[RFC5832] Dolmatov, V., Ed., "GOST R 34.10-2001: Digital Signature Algorithm", RFC 5832, March 2010.

[RFC5832]多尔马托夫,V.,编辑,“GOST R 34.10-2001:数字签名算法”,RFC 5832,2010年3月。

Authors' Addresses

作者地址

Vasily Dolmatov (editor) Cryptocom Ltd. 14/2, Kedrova St. Moscow, 117218 Russian Federation

瓦西里·多尔马托夫(编辑)加密通信有限公司,俄罗斯联邦莫斯科凯德罗瓦街14/2号,邮编:117218

   Phone: +7 499 124 6226
   EMail: dol@cryptocom.ru
        
   Phone: +7 499 124 6226
   EMail: dol@cryptocom.ru
        

Artem Chuprina Cryptocom Ltd. 14/2, Kedrova St. Moscow, 117218 Russian Federation

俄罗斯联邦莫斯科凯德罗瓦街14/2号Artem Chuprina Cryptocom有限公司,邮编:117218

   Phone: +7 499 124 6226
   EMail: ran@cryptocom.ru
        
   Phone: +7 499 124 6226
   EMail: ran@cryptocom.ru
        

Igor Ustinov Cryptocom Ltd. 14/2, Kedrova St. Moscow, 117218 Russian Federation

俄罗斯联邦莫斯科凯德罗瓦大街14/2号伊戈尔·乌斯季诺夫加密通信有限公司,邮编:117218

   Phone: +7 499 124 6226
   EMail: igus@cryptocom.ru
        
   Phone: +7 499 124 6226
   EMail: igus@cryptocom.ru