Independent Submission                                        N. Leymann
Request for Comments: 8157                                  C. Heidemann
Category: Informational                              Deutsche Telekom AG
ISSN: 2070-1721                                                 M. Zhang
                                                             B. Sarikaya
                                                                  Huawei
                                                               M. Cullen
                                                       Painless Security
                                                                May 2017
        
Independent Submission                                        N. Leymann
Request for Comments: 8157                                  C. Heidemann
Category: Informational                              Deutsche Telekom AG
ISSN: 2070-1721                                                 M. Zhang
                                                             B. Sarikaya
                                                                  Huawei
                                                               M. Cullen
                                                       Painless Security
                                                                May 2017
        

Huawei's GRE Tunnel Bonding Protocol

华为的GRE隧道连接协议

Abstract

摘要

There is an emerging demand for solutions that provide redundancy and load-sharing across wired and cellular links from a single Service Provider, so that a single subscriber is provided with bonded access to heterogeneous connections at the same time.

现在有一种新的解决方案需求,这种解决方案可以从单个服务提供商跨有线和蜂窝链路提供冗余和负载共享,从而使单个订户能够同时绑定访问异构连接。

In this document, GRE (Generic Routing Encapsulation) Tunnel Bonding is specified as an enabling approach for bonded access to a wired and a wireless network in customer premises, e.g., homes. In GRE Tunnel Bonding, two GRE tunnels, one per network connection, are set up and bonded together to form a single GRE tunnel for a subscriber. Compared with each subconnection, the bonded connections promise increased access capacity and improved reliability. The solution described in this document is currently implemented by Huawei and deployed by Deutsche Telekom AG. This document will enable other developers to build interoperable implementations.

在本文档中,GRE(通用路由封装)隧道连接被指定为在客户场所(如家庭)中对有线和无线网络进行连接访问的一种启用方法。在GRE隧道连接中,设置两个GRE隧道(每个网络连接一个),并将它们连接在一起,为用户形成一个GRE隧道。与每个子连接相比,键合连接有助于提高接入容量和可靠性。本文档中描述的解决方案目前由华为实施,并由德国电信公司部署。本文档将使其他开发人员能够构建可互操作的实现。

Status of This Memo

关于下段备忘

This document is not an Internet Standards Track specification; it is published for informational purposes.

本文件不是互联网标准跟踪规范;它是为了提供信息而发布的。

This is a contribution to the RFC Series, independently of any other RFC stream. The RFC Editor has chosen to publish this document at its discretion and makes no statement about its value for implementation or deployment. Documents approved for publication by the RFC Editor are not a candidate for any level of Internet Standard; see Section 2 of RFC 7841.

这是对RFC系列的贡献,独立于任何其他RFC流。RFC编辑器已选择自行发布此文档,并且未声明其对实现或部署的价值。RFC编辑批准发布的文件不适用于任何级别的互联网标准;见RFC 7841第2节。

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc8157.

有关本文件当前状态、任何勘误表以及如何提供反馈的信息,请访问http://www.rfc-editor.org/info/rfc8157.

Copyright Notice

版权公告

Copyright (c) 2017 IETF Trust and the persons identified as the document authors. All rights reserved.

版权所有(c)2017 IETF信托基金和确定为文件作者的人员。版权所有。

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document.

本文件受BCP 78和IETF信托有关IETF文件的法律规定的约束(http://trustee.ietf.org/license-info)自本文件出版之日起生效。请仔细阅读这些文件,因为它们描述了您对本文件的权利和限制。

Table of Contents

目录

   1. Introduction ....................................................3
   2. Acronyms and Terminology ........................................4
   3. Use Case ........................................................6
   4. Overview ........................................................7
      4.1. Control Plane ..............................................7
      4.2. Data Plane .................................................7
      4.3. Traffic Classification and Distribution ....................8
      4.4. Traffic Recombination ......................................8
      4.5. Bypass .....................................................9
      4.6. Measurement ................................................9
      4.7. Policy Control Considerations ..............................9
   5. Control Protocol Specification (Control Plane) .................10
      5.1. GRE Tunnel Setup Request ..................................12
           5.1.1. Client Identification Name .........................12
           5.1.2. Session ID .........................................13
           5.1.3. DSL Synchronization Rate ...........................14
      5.2. GRE Tunnel Setup Accept ...................................14
           5.2.1. H IPv4 Address .....................................15
           5.2.2. H IPv6 Address .....................................15
           5.2.3. Session ID .........................................16
           5.2.4. RTT Difference Threshold ...........................16
           5.2.5. Bypass Bandwidth Check Interval ....................17
           5.2.6. Active Hello Interval ..............................17
           5.2.7. Hello Retry Times ..................................18
           5.2.8. Idle Timeout .......................................18
           5.2.9. Bonding Key Value ..................................19
           5.2.10. Configured DSL Upstream Bandwidth .................20
           5.2.11. Configured DSL Downstream Bandwidth ...............21
           5.2.12. RTT Difference Threshold Violation ................21
           5.2.13. RTT Difference Threshold Compliance ...............22
           5.2.14. Idle Hello Interval ...............................23
           5.2.15. No Traffic Monitored Interval .....................23
        
   1. Introduction ....................................................3
   2. Acronyms and Terminology ........................................4
   3. Use Case ........................................................6
   4. Overview ........................................................7
      4.1. Control Plane ..............................................7
      4.2. Data Plane .................................................7
      4.3. Traffic Classification and Distribution ....................8
      4.4. Traffic Recombination ......................................8
      4.5. Bypass .....................................................9
      4.6. Measurement ................................................9
      4.7. Policy Control Considerations ..............................9
   5. Control Protocol Specification (Control Plane) .................10
      5.1. GRE Tunnel Setup Request ..................................12
           5.1.1. Client Identification Name .........................12
           5.1.2. Session ID .........................................13
           5.1.3. DSL Synchronization Rate ...........................14
      5.2. GRE Tunnel Setup Accept ...................................14
           5.2.1. H IPv4 Address .....................................15
           5.2.2. H IPv6 Address .....................................15
           5.2.3. Session ID .........................................16
           5.2.4. RTT Difference Threshold ...........................16
           5.2.5. Bypass Bandwidth Check Interval ....................17
           5.2.6. Active Hello Interval ..............................17
           5.2.7. Hello Retry Times ..................................18
           5.2.8. Idle Timeout .......................................18
           5.2.9. Bonding Key Value ..................................19
           5.2.10. Configured DSL Upstream Bandwidth .................20
           5.2.11. Configured DSL Downstream Bandwidth ...............21
           5.2.12. RTT Difference Threshold Violation ................21
           5.2.13. RTT Difference Threshold Compliance ...............22
           5.2.14. Idle Hello Interval ...............................23
           5.2.15. No Traffic Monitored Interval .....................23
        
      5.3. GRE Tunnel Setup Deny .....................................24
           5.3.1. Error Code .........................................24
      5.4. GRE Tunnel Hello ..........................................25
           5.4.1. Timestamp ..........................................25
           5.4.2. IPv6 Prefix Assigned by HAAP .......................26
      5.5. GRE Tunnel Tear Down ......................................26
      5.6. GRE Tunnel Notify .........................................27
           5.6.1. Bypass Traffic Rate ................................27
           5.6.2. Filter List Package ................................28
           5.6.3. Switching to DSL Tunnel ............................31
           5.6.4. Overflowing to LTE Tunnel ..........................31
           5.6.5. DSL Link Failure ...................................32
           5.6.6. LTE Link Failure ...................................32
           5.6.7. IPv6 Prefix Assigned to Host .......................33
           5.6.8. Diagnostic Start: Bonding Tunnel ...................33
           5.6.9. Diagnostic Start: DSL Tunnel .......................34
           5.6.10. Diagnostic Start: LTE Tunnel ......................34
           5.6.11. Diagnostic End ....................................35
           5.6.12. Filter List Package ACK ...........................35
           5.6.13. Switching to Active Hello State ...................36
           5.6.14. Switching to Idle Hello State .....................37
           5.6.15. Tunnel Verification ...............................37
   6. Tunnel Protocol Operation (Data Plane) .........................38
      6.1. The GRE Header ............................................38
      6.2. Automatic Setup of GRE Tunnels ............................39
   7. Security Considerations ........................................41
   8. IANA Considerations ............................................41
   9. References .....................................................41
      9.1. Normative References ......................................41
      9.2. Informative References ....................................42
   Contributors ......................................................43
   Authors' Addresses ................................................44
        
      5.3. GRE Tunnel Setup Deny .....................................24
           5.3.1. Error Code .........................................24
      5.4. GRE Tunnel Hello ..........................................25
           5.4.1. Timestamp ..........................................25
           5.4.2. IPv6 Prefix Assigned by HAAP .......................26
      5.5. GRE Tunnel Tear Down ......................................26
      5.6. GRE Tunnel Notify .........................................27
           5.6.1. Bypass Traffic Rate ................................27
           5.6.2. Filter List Package ................................28
           5.6.3. Switching to DSL Tunnel ............................31
           5.6.4. Overflowing to LTE Tunnel ..........................31
           5.6.5. DSL Link Failure ...................................32
           5.6.6. LTE Link Failure ...................................32
           5.6.7. IPv6 Prefix Assigned to Host .......................33
           5.6.8. Diagnostic Start: Bonding Tunnel ...................33
           5.6.9. Diagnostic Start: DSL Tunnel .......................34
           5.6.10. Diagnostic Start: LTE Tunnel ......................34
           5.6.11. Diagnostic End ....................................35
           5.6.12. Filter List Package ACK ...........................35
           5.6.13. Switching to Active Hello State ...................36
           5.6.14. Switching to Idle Hello State .....................37
           5.6.15. Tunnel Verification ...............................37
   6. Tunnel Protocol Operation (Data Plane) .........................38
      6.1. The GRE Header ............................................38
      6.2. Automatic Setup of GRE Tunnels ............................39
   7. Security Considerations ........................................41
   8. IANA Considerations ............................................41
   9. References .....................................................41
      9.1. Normative References ......................................41
      9.2. Informative References ....................................42
   Contributors ......................................................43
   Authors' Addresses ................................................44
        
1. Introduction
1. 介绍

Service Providers used to provide subscribers with separate access to their fixed networks and mobile networks. It has become desirable to bond these heterogeneous networks together to offer access service to subscribers; this service will provide increased access capacity and improved reliability.

过去,服务提供商为用户提供单独的固定网络和移动网络接入。人们希望将这些异构网络连接在一起,为用户提供接入服务;这项服务将提供更大的访问容量和更高的可靠性。

This document focuses on the use case where a DSL (Digital Subscriber Line) connection and an LTE (Long Term Evolution) connection are bonded together. When the traffic volume exceeds the bandwidth of the DSL connection, the excess amount can be offloaded to the LTE connection. A Home Gateway (HG) is a Customer Premises Equipment (CPE) device initiating the DSL and LTE connections. A Hybrid Access Aggregation Point (HAAP) is the network function that resides in the

本文档重点介绍DSL(数字用户线路)连接和LTE(长期演进)连接结合在一起的用例。当业务量超过DSL连接的带宽时,多余的量可以卸载到LTE连接。家庭网关(HG)是发起DSL和LTE连接的客户场所设备(CPE)设备。混合访问聚合点(HAAP)是驻留在

provider's networks to terminate these bonded connections. Note that if there were more than two connections that need to be bonded, the GRE Tunnel Bonding mechanism could support that scenario as well. However, support for more than two connections is out of scope for this document. Also, the protocol specified in this document is limited to the single-operator scenario only, i.e., the two peering boxes -- the HG and the HAAP -- are operated by a single provider. The adaptation of the GRE Tunnel Bonding Protocol to the multi-provider scenario is left for future work.

供应商的网络终止这些连接。注意,如果有两个以上的连接需要连接,GRE隧道连接机制也可以支持这种情况。但是,对两个以上连接的支持超出了本文档的范围。此外,本文档中指定的协议仅限于单操作员场景,即两个对等框(HG和HAAP)由单个提供商操作。GRE隧道绑定协议对多提供商场景的适应将留待将来的工作。

This document bases the solution on GRE (Generic Routing Encapsulation [RFC2784] [RFC2890]), since GRE is widely supported in both fixed and mobile networks. Approaches specified in this document might also be used by other tunneling technologies to achieve tunnel bonding. However, such variants are out of scope for this document.

本文档基于GRE(通用路由封装[RFC2784][RFC2890]),因为GRE在固定和移动网络中都得到广泛支持。本文件中规定的方法也可用于其他隧道技术,以实现隧道连接。但是,此类变体不在本文档的范围内。

For each heterogeneous connection (DSL and LTE) between the HG and the HAAP, one GRE tunnel is set up. The HG and the HAAP, respectively, serve as the common termination point of the two tunnels at both ends. Those GRE tunnels are further bonded together to form a logical GRE tunnel for the subscriber. The HG conceals the GRE tunnels from the end nodes, and end nodes simply treat the logical GRE tunnel as a single IP link. This provides an overlay: the users' IP packets (inner IP) are encapsulated in GRE, which is in turn carried over IP (outer IP).

对于HG和HAAP之间的每个异构连接(DSL和LTE),设置一个GRE隧道。HG和HAAP分别作为两端两条隧道的共同终点。这些GRE隧道进一步结合在一起,为订阅者形成一个逻辑GRE隧道。HG对终端节点隐藏GRE隧道,终端节点只是将逻辑GRE隧道视为单个IP链路。这提供了一个覆盖:用户的IP数据包(内部IP)封装在GRE中,GRE反过来通过IP(外部IP)进行传输。

The GRE Tunnel Bonding Protocol is developed by Huawei and has been deployed in networks operated by Deutsche Telekom AG. This document makes this protocol available to the public, thereby enabling other developers to build interoperable implementations.

GRE隧道连接协议由华为开发,并已部署在德国电信公司运营的网络中。本文档使此协议可供公众使用,从而使其他开发人员能够构建可互操作的实现。

2. Acronyms and Terminology
2. 缩略语和术语

GRE: Generic Routing Encapsulation [RFC2784] [RFC2890].

GRE:通用路由封装[RFC2784][RFC2890]。

DSL: Digital Subscriber Line. A family of technologies used to transmit digital data over telephone lines.

DSL:数字用户线路。用于通过电话线传输数字数据的一系列技术。

LTE: Long Term Evolution. A standard for wireless communication of high-speed data for mobile phones and data terminals. Commonly marketed as 4G LTE.

LTE:长期演进。用于移动电话和数据终端的高速数据无线通信的标准。通常被称为4G LTE。

HG: Home Gateway. A CPE device that is enhanced to support the simultaneous use of both fixed broadband and 3GPP access connections.

家庭网关。一种CPE设备,经过增强以支持同时使用固定宽带和3GPP接入连接。

HAAP: Hybrid Access Aggregation Point. A logical function in an operator's network, terminating bonded connections while offering high-speed Internet.

HAAP:混合访问聚合点。运营商网络中的一种逻辑功能,在提供高速互联网的同时终止连接。

CIR: Committed Information Rate [RFC2697].

CIR:提交的信息速率[RFC2697]。

RTT: Round-Trip Time.

RTT:往返时间。

AAA: Authentication, Authorization, and Accounting [RFC6733].

AAA:身份验证、授权和记帐[RFC6733]。

SOAP: Simple Object Access Protocol. A protocol specification for exchanging structured information in the implementation of web services in computer networks.

SOAP:简单对象访问协议。在计算机网络中实现web服务时交换结构化信息的协议规范。

FQDN: Fully Qualified Domain Name. Generally, a host name with at least one domain label under the top-level domain. For example, "dhcp.example.org" is an FQDN [RFC7031].

FQDN:完全限定的域名。通常,在顶级域下至少有一个域标签的主机名。例如,“dhcp.example.org”是一个FQDN[RFC7031]。

DSCP: The 6-bit codepoint (DSCP) of the Differentiated Services field (DS field) in the IPv4 and IPv6 headers [RFC2724].

DSCP:IPv4和IPv6标头中区分服务字段(DS字段)的6位代码点(DSCP)[RFC2724]。

BRAS: Broadband Remote Access Server. Routes traffic to and from broadband remote access devices such as Digital Subscriber Line Access Multiplexers (DSLAMs) on an Internet Service Provider's (ISP's) network.

宽带远程访问服务器。在互联网服务提供商(ISP)网络上,将流量路由到宽带远程接入设备,如数字用户线路接入多路复用器(DSLAM)。

PGW: Packet Data Network Gateway. In the Long Term Evolution (LTE) architecture for the Evolved Packet Core (EPC), acts as an anchor for user-plane mobility.

分组数据网络网关。在用于演进分组核心(EPC)的长期演进(LTE)架构中,充当用户平面移动性的锚。

PDP: Packet Data Protocol. A packet transfer protocol used in wireless GPRS (General Packet Radio Service) / HSDPA (High-Speed Downlink Packet Access) networks.

包数据协议。一种用于无线GPRS(通用分组无线业务)/HSDPA(高速下行分组接入)网络的分组传输协议。

PPPoE: Point-to-Point over Ethernet. A network protocol for encapsulating PPP frames inside Ethernet frames.

PPPoE:通过以太网的点对点。用于将PPP帧封装在以太网帧内的网络协议。

DNS: Domain Name System. A hierarchical distributed naming system for computers, services, or any resource connected to the Internet or a private network.

域名系统。连接到Internet或专用网络的计算机、服务或任何资源的分层分布式命名系统。

DHCP: Dynamic Host Configuration Protocol. A standardized network protocol used on Internet Protocol (IP) networks for dynamically distributing network configuration parameters, such as IP addresses for interfaces and services.

DHCP:动态主机配置协议。在因特网协议(IP)网络上使用的一种标准化网络协议,用于动态分配网络配置参数,如接口和服务的IP地址。

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

本文件中的关键词“必须”、“不得”、“要求”、“应”、“不应”、“应”、“不应”、“建议”、“可”和“可选”应按照RFC 2119[RFC2119]中所述进行解释。

3. Use Case
3. 用例
                           Bonding Connection
                  +-+ ****************************
                  | | *+-+                    +-+*
                  | | *|E+-- LTE Connection --+ |*
       subscriber |C| *+-+                    |H|*  Internet
                  | | *+-+                    | |*
                  | | *|D+-- DSL Connection --+ |*
                  | | *+-+                    +-+*
                  +-+ ****************************
                  \______/                    \__/
                     HG                       HAAP
        
                           Bonding Connection
                  +-+ ****************************
                  | | *+-+                    +-+*
                  | | *|E+-- LTE Connection --+ |*
       subscriber |C| *+-+                    |H|*  Internet
                  | | *+-+                    | |*
                  | | *|D+-- DSL Connection --+ |*
                  | | *+-+                    +-+*
                  +-+ ****************************
                  \______/                    \__/
                     HG                       HAAP
        

C: The service endpoint of the bonding service at the HG. E: The endpoint of the LTE connection resides in the HG. D: The endpoint of the DSL connection resides in the HG. H: The endpoint for each heterogeneous connection at the HAAP.

C:HG处绑定服务的服务端点。E:LTE连接的端点位于HG中。D:DSL连接的端点位于HG中。H:HAAP上每个异构连接的端点。

Figure 1: Offloading from DSL to LTE, Increased Access Capacity

图1:从DSL转移到LTE,增加了接入容量

If a Service Provider runs heterogeneous networks, such as fixed and mobile, subscribers might be eager to use those networks simultaneously for increased access capacity rather than just using a single network. As shown by the reference model in Figure 1, the subscriber expects a significantly higher access bandwidth from the bonding connection than from the DSL connection. In other words, when the traffic volume exceeds the bandwidth of the DSL connection, the excess amount may be offloaded to the LTE connection.

如果服务提供商运行异构网络,例如固定网络和移动网络,则用户可能希望同时使用这些网络以增加访问容量,而不仅仅是使用单一网络。如图1中的参考模型所示,订户期望从绑定连接获得比DSL连接高得多的访问带宽。换句话说,当业务量超过DSL连接的带宽时,多余的量可以被卸载到LTE连接。

Compared to per-flow load-balancing mechanisms, which are widely used nowadays, the use case described in this document requires a per-packet offloading approach. For per-flow load balancing, the maximum bandwidth that may be used by a traffic flow is the bandwidth of an individual connection, while for per-packet offloading, a single flow may use the combined bandwidth of the two connections.

与当前广泛使用的每流负载平衡机制相比,本文描述的用例需要每包卸载方法。对于每流负载平衡,业务流可能使用的最大带宽是单个连接的带宽,而对于每包卸载,单个流可能使用两个连接的组合带宽。

4. Overview
4. 概述

In this document, the widely supported GRE is chosen as the tunneling technique. With the newly defined control protocol, GRE tunnels are set up on top of the DSL and LTE connections, which are ended at D and H or at E and H, as shown in Figure 1. These tunnels are bonded together to form a single logical bonding connection between the HG and the HAAP. Subscribers use this logical connection without knowing the GRE tunnels.

在本文中,广泛支持的GRE被选为隧道技术。通过新定义的控制协议,GRE隧道建立在DSL和LTE连接之上,这些连接在D和H或E和H处结束,如图1所示。这些隧道连接在一起,形成HG和HAAP之间的单一逻辑连接。订阅者在不知道GRE隧道的情况下使用此逻辑连接。

4.1. Control Plane
4.1. 控制平面

A clean-slate control protocol is designed to manage the GRE tunnels that are set up per heterogeneous connection between the HG and the HAAP. The goal is to design a compact control plane for bonding access instead of reusing existing control planes.

设计了一个干净的控制协议,用于管理根据HG和HAAP之间的异构连接设置的GRE隧道。我们的目标是设计一个紧凑的控制平面来绑定访问,而不是重用现有的控制平面。

In order to measure the performance of connections, control packets need to co-route the same path with data packets. Therefore, a GRE Channel is opened for the purpose of data-plane forwarding of control-plane packets. As shown in Figure 2 (see Section 5), the GRE header [RFC2784] with the Key extension specified by [RFC2890] is being used. The GRE Protocol Type (0xB7EA) is used to identify this GRE Channel. A family of control messages is encapsulated with a GRE header and carried over this channel. Attributes, formatted in Type-Length-Value (TLV) style, are further defined and included in each control message.

为了测量连接的性能,控制包需要与数据包共同路由相同的路径。因此,为了控制平面分组的数据平面转发,打开GRE信道。如图2所示(参见第5节),正在使用GRE头[RFC2784],其密钥扩展名由[RFC2890]指定。GRE协议类型(0xB7EA)用于标识此GRE通道。一系列控制消息用GRE头封装并通过该通道传输。以类型长度值(TLV)样式格式化的属性将进一步定义并包含在每个控制消息中。

With the newly defined control plane, the GRE tunnels between the HG and the HAAP can be established, managed, and released without the involvement of operators.

通过新定义的控制平面,HG和HAAP之间的GRE隧道可以在没有操作员参与的情况下建立、管理和发布。

4.2. Data Plane
4.2. 数据平面

Using the control plane defined in Section 4.1, GRE tunnels can be automatically set up per heterogeneous connection between the HG and the HAAP. For the use case described in Section 3, one GRE tunnel is ended at the DSL WAN interfaces, e.g., the DSL GRE tunnel, and another GRE tunnel is ended at the LTE WAN interfaces, e.g., the LTE GRE tunnel. Each tunnel may carry a user's IP packets as payload, which forms a typical IP-over-IP overlay. These tunnels are bonded together to offer a single access point to subscribers.

使用第4.1节中定义的控制平面,可以根据HG和HAAP之间的异构连接自动设置GRE隧道。对于第3节中描述的用例,一个GRE隧道在DSL WAN接口处结束,例如DSL GRE隧道,另一个GRE隧道在LTE WAN接口处结束,例如LTE GRE隧道。每个隧道可以承载用户的IP分组作为有效载荷,这形成典型的IP-over-IP覆盖。这些隧道连接在一起,为用户提供单一接入点。

As shown in Figure 3 (see Section 6.1), the GRE header [RFC2784] with the Key and Sequence Number extensions specified by [RFC2890] is used to encapsulate data packets. The Protocol Type is either 0x0800 (listed as "0x800" in [RFC2784]) or 0x86DD [RFC7676], which indicates that the inner packet is either an IPv4 packet or an IPv6 packet,

如图3所示(参见第6.1节),GRE头[RFC2784]以及[RFC2890]指定的密钥和序列号扩展用于封装数据包。协议类型为0x0800(在[RFC2784]中列为“0x800”)或0x86DD[RFC7676],表示内部数据包为IPv4数据包或IPv6数据包,

respectively. The GRE Key field is set to a unique value for the entire bonding connection. The GRE Sequence Number field is used to maintain the sequence of packets transported in all GRE tunnels as a single flow between the HG and the HAAP.

分别地GRE Key字段设置为整个粘接连接的唯一值。GRE序列号字段用于将所有GRE隧道中传输的数据包序列作为HG和HAAP之间的单个流进行维护。

4.3. Traffic Classification and Distribution
4.3. 交通分类和分布

For the offloading use case, the coloring mechanism specified in [RFC2697] is being used to classify subscribers' IP packets, both upstream and downstream, into the DSL GRE tunnel or the LTE GRE tunnel. Packets colored as green or yellow will be distributed into the DSL GRE tunnel, and packets colored as red will be distributed into the LTE GRE tunnel. For the scenario that requires more than two GRE tunnels, multiple levels of token buckets might be realized. However, that scenario is out of scope for this document.

对于卸载用例,[RFC2697]中指定的着色机制用于将用户的IP包(包括上游和下游)分类到DSL GRE隧道或LTE GRE隧道中。颜色为绿色或黄色的分组将被分配到DSL GRE隧道中,颜色为红色的分组将被分配到LTE GRE隧道中。对于需要两个以上GRE隧道的场景,可以实现多级令牌桶。但是,该场景超出了本文档的范围。

The Committed Information Rate (CIR) of the coloring mechanism is set to the total DSL WAN bandwidth minus the bypass DSL bandwidth (see Section 4.5). The total DSL WAN bandwidth MAY be configured, MAY be obtained from the management system (AAA server, SOAP server, etc.), or MAY be detected in real time using the Access Node Control Protocol (ANCP) [RFC6320].

着色机制的提交信息速率(CIR)设置为DSL WAN总带宽减去旁路DSL带宽(见第4.5节)。DSL WAN总带宽可以配置,可以从管理系统(AAA服务器、SOAP服务器等)获得,或者可以使用接入节点控制协议(ANCP)[RFC6320]实时检测。

4.4. Traffic Recombination
4.4. 业务重组

For the offloading use case, the recombination function at the receiver provides in-order delivery of subscribers' traffic. The receiver maintains a small reordering buffer and orders the data packets in this buffer via the Sequence Number field [RFC2890] of the GRE header. All packets carried on GRE tunnels that belong to the same bonding connection go into a single reordering buffer.

对于卸载用例,接收器处的重组功能提供订户通信量的有序交付。接收器维护一个小的重新排序缓冲区,并通过GRE报头的序列号字段[RFC2890]对该缓冲区中的数据包进行排序。属于同一绑定连接的GRE隧道上携带的所有数据包都进入一个重新排序缓冲区。

Operators may configure the maximum allowed size (see MAX_PERFLOW_BUFFER in [RFC2890]) of the buffer for reordering. They may also configure the maximum time (see OUTOFORDER_TIMER in [RFC2890]) that a packet can stay in the buffer for reordering. The OUTOFORDER_TIMER must be configured carefully. Values larger than the difference of the normal Round-Trip Time (RTT) (e.g., 100 ms) of the two connections are not recommended. Implementation and deployment experiences have demonstrated that there is usually a large margin for the value of MAX_PERFLOW_BUFFER. Values larger than the multiplication of the sum of the line rate of the two connections and the value of OUTOFORDER_TIMER should be used.

操作员可以配置缓冲区的最大允许大小(请参阅[RFC2890]中的MAX_PERFLOW_BUFFER)以进行重新排序。它们还可以配置数据包可以停留在缓冲区中进行重新排序的最长时间(参见[RFC2890]中的OUTOFORDER_TIMER)。必须仔细配置无序计时器。不建议使用大于两个连接的正常往返时间(RTT)差(例如100 ms)的值。实施和部署经验表明,MAX_PERFLOW_BUFFER的值通常有很大的余量。应使用大于两个连接的线路速率和无序定时器值之和的乘积的值。

4.5. Bypass
4.5. 旁路

Service Providers provide some services that should not be delivered over the bonding connection. For example, Service Providers may not expect real-time IPTV to be carried by the LTE GRE tunnel. It is required that IPTV traffic bypass the GRE Tunnel Bonding and use the raw DSL bandwidth. Bypass traffic is not subject to the traffic classification and distribution specified above. The raw connection used for bypass traffic is not controlled by the HAAP. It may or may not go through a device in which the HAAP resides.

服务提供商提供的某些服务不应通过绑定连接提供。例如,服务提供商可能不期望LTE-GRE隧道承载实时IPTV。要求IPTV流量绕过GRE隧道连接,并使用原始DSL带宽。旁路交通不受上述交通分类和分布的限制。用于旁路流量的原始连接不受HAAP控制。它可能会也可能不会通过HAAP所在的设备。

The HAAP may announce the service types that need to bypass the bonded GRE tunnels by using the Filter List Package attribute as specified in Section 5.6.2. The HG and the HAAP need to set aside the DSL bandwidth for bypassing. The available DSL bandwidth for GRE Tunnel Bonding is equal to the total DSL bandwidth minus the bypass bandwidth.

HAAP可通过使用第5.6.2节规定的过滤器列表包属性宣布需要绕过保税GRE隧道的服务类型。HG和HAAP需要留出DSL带宽用于旁路。GRE隧道连接的可用DSL带宽等于总DSL带宽减去旁路带宽。

4.6. Measurement
4.6. 测量

Since control packets are routed using the same paths as the data packets, the real performance of the data paths (e.g., the GRE tunnels) can be measured. The GRE Tunnel Hello messages specified in Section 5.4 are used to carry the timestamp information, and the RTT value can therefore be calculated based on the timestamp.

由于控制分组使用与数据分组相同的路径进行路由,因此可以测量数据路径(例如,GRE隧道)的实际性能。第5.4节中规定的GRE隧道Hello消息用于携带时间戳信息,因此可以根据时间戳计算RTT值。

Besides the end-to-end delay of the GRE tunnels, the HG and the HAAP need to measure the capacity of the tunnels as well. For example, the HG is REQUIRED to measure the downstream bypassing bandwidth and report it to the HAAP in real time (see Section 5.6.1).

除了GRE隧道的端到端延迟外,HG和HAAP还需要测量隧道的容量。例如,HG需要测量下游旁路带宽并实时报告给HAAP(见第5.6.1节)。

4.7. Policy Control Considerations
4.7. 政策管制考虑

Operators and users may input policies into the GRE Tunnel Bonding. These policies will be "interpreted" into parameters or actions that impact the traffic classification, distribution, combination, measurement, and bypass.

运营商和用户可将政策输入GRE。这些策略将被“解释”为影响流量分类、分布、组合、测量和旁路的参数或操作。

Operators and users may offer the service types that need to bypass the bonded GRE tunnels. Service types defined by operators (see Section 5.6.2) will be delivered from the HAAP to the HG through the control plane (see Section 4.1), and the HG will use the raw connection to transmit traffic for these service types. Users may also define bypass service types on the HG. Bypass service types defined by users need not be delivered to the HAAP.

运营商和用户可以提供需要绕过保税GRE隧道的服务类型。运营商定义的服务类型(见第5.6.2节)将通过控制平面(见第4.1节)从HAAP传输到HG,HG将使用原始连接传输这些服务类型的流量。用户还可以在HG上定义旁路服务类型。用户定义的旁路服务类型不需要交付给HAAP。

Operators may specify the interval for sending Hello messages and the retry times for the HG or the HAAP to send out Hello messages before the failure of a connection.

操作员可以指定发送Hello消息的间隔,以及HG或HAAP在连接失败之前发送Hello消息的重试时间。

Since the GRE tunnels are set up on top of heterogeneous DSL and LTE connections, if the difference of the transmission delays of these connections exceeds a given threshold for a certain period, the HG and the HAAP should be able to stop the offloading behavior and fall back to a traditional transmission mode, where the LTE GRE tunnel is disused while all traffic is transmitted over the DSL GRE tunnel. Operators are allowed to define this threshold and period.

由于GRE隧道建立在异构DSL和LTE连接之上,如果这些连接的传输延迟差异在一定时间内超过给定阈值,HG和HAAP应该能够停止卸载行为并返回到传统传输模式,当所有业务通过DSL GRE隧道传输时,LTE GRE隧道被停用。允许操作员定义此阈值和周期。

5. Control Protocol Specification (Control Plane)
5. 控制协议规范(控制平面)

Control messages are used to establish, maintain, measure, and tear down GRE tunnels between the HG and the HAAP. Also, the control plane undertakes the responsibility to convey traffic policies over the GRE tunnels.

控制信息用于建立、维护、测量和拆除HG和HAAP之间的GRE隧道。此外,控制飞机负责传达GRE隧道的交通政策。

For the purpose of measurement, control messages need to be delivered as GRE encapsulated packets and co-routed with data-plane packets. The new GRE Protocol Type (0xB7EA) is allocated for this purpose, and the standard GRE header as per [RFC2784] with the Key extension specified by [RFC2890] is used. The Checksum Present bit is set to 0. The Key Present bit is set to 1. The Sequence Number Present bit is set to 0. So, the format of the GRE header for control messages of the GRE Tunnel Bonding Protocol is as follows:

出于测量目的,控制消息需要作为GRE封装的数据包交付,并与数据平面数据包共同路由。为此目的分配了新的GRE协议类型(0xB7EA),并使用了符合[RFC2784]的标准GRE头,其密钥扩展名由[RFC2890]指定。校验和当前位设置为0。密钥存在位设置为1。序列号当前位设置为0。因此,GRE隧道绑定协议控制消息的GRE报头格式如下:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |0| |1|0| Reserved0       | Ver |   Protocol Type 0xB7EA        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                              Key                              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |0| |1|0| Reserved0       | Ver |   Protocol Type 0xB7EA        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                              Key                              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        

Key For security purposes, the Key field is used to carry a random number. The random number is generated by the HAAP, and the HG is informed of it (see Section 5.2.9).

密钥出于安全目的,密钥字段用于携带随机数。随机数由HAAP生成,并通知HG(见第5.2.9节)。

The general format of the entire control message is as follows:

整个控制信息的一般格式如下:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |0| |1|0|   Reserved0     | Ver |   Protocol Type 0xB7EA        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                              Key                              |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |MsgType|T-Type |                                               |
    +-+-+-+-+-+-+-+-+           Attributes                          +
    ~                                                               ~
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        
     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |0| |1|0|   Reserved0     | Ver |   Protocol Type 0xB7EA        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                              Key                              |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |MsgType|T-Type |                                               |
    +-+-+-+-+-+-+-+-+           Attributes                          +
    ~                                                               ~
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        

Figure 2: Format of Control Messages of GRE Tunnel Bonding

图2:GRE隧道连接控制消息格式

MsgType (4 bits) Message Type. The control message family contains the following six types of control messages (not including "Reserved"):

MsgType(4位)消息类型。控制消息系列包含以下六种类型的控制消息(不包括“保留”):

                 Control Message Family         Type
                ==========================    =========
                 GRE Tunnel Setup Request       1
                 GRE Tunnel Setup Accept        2
                 GRE Tunnel Setup Deny          3
                 GRE Tunnel Hello               4
                 GRE Tunnel Tear Down           5
                 GRE Tunnel Notify              6
                 Reserved                       0, 7-15
        
                 Control Message Family         Type
                ==========================    =========
                 GRE Tunnel Setup Request       1
                 GRE Tunnel Setup Accept        2
                 GRE Tunnel Setup Deny          3
                 GRE Tunnel Hello               4
                 GRE Tunnel Tear Down           5
                 GRE Tunnel Notify              6
                 Reserved                       0, 7-15
        

T-Type (4 bits) Tunnel Type. Set to 0001 if the control message is sent via the primary GRE tunnel (normally the DSL GRE tunnel). Set to 0010 if the control message is sent via the secondary GRE tunnel (normally the LTE GRE tunnel). Values 0000 and values from 0011 through 1111 are reserved for future use and MUST be ignored on receipt.

T型(4位)隧道型。如果控制消息通过主GRE通道(通常是DSL GRE通道)发送,则设置为0001。如果控制消息通过辅助GRE隧道(通常是LTE GRE隧道)发送,则设置为0010。值0000和0011到1111之间的值保留供将来使用,在收到时必须忽略。

Attributes The Attributes field includes the attributes that need to be carried in the control message. Each Attribute has the following format:

属性属性字段包括需要在控制消息中携带的属性。每个属性具有以下格式:

      +-+-+-+-+-+-+-+-+
      |Attribute Type |                  (1 byte)
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Attribute Length             |  (2 bytes)
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Attribute Value              ~  (variable)
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        
      +-+-+-+-+-+-+-+-+
      |Attribute Type |                  (1 byte)
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Attribute Length             |  (2 bytes)
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Attribute Value              ~  (variable)
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        

Attribute Type The Attribute Type specifies the type of the attribute.

属性类型属性类型指定属性的类型。

Attribute Length Attribute Length indicates the length of the Attribute Value in bytes.

属性长度属性长度以字节为单位指示属性值的长度。

Attribute Value The Attribute Value includes the value of the attribute.

属性值属性值包括属性的值。

All control messages are sent in network byte order (high-order bytes first). The Protocol Type carried in the GRE header for the control message is 0xB7EA. Based on this number, the receiver will decide to consume the GRE packet locally rather than forward it further.

所有控制消息均以网络字节顺序发送(先发送高阶字节)。控制消息的GRE标头中携带的协议类型为0xB7EA。基于这个数字,接收器将决定在本地使用GRE数据包,而不是进一步转发它。

5.1. GRE Tunnel Setup Request
5.1. GRE隧道设置请求

The HG uses the GRE Tunnel Setup Request message to request that the HAAP establish the GRE tunnels. It is sent out from the HG's LTE and DSL WAN interfaces separately. Attributes that need to be included in this message are defined in the following subsections.

HG使用GRE隧道设置请求消息请求HAAP建立GRE隧道。它分别从HG的LTE和DSL WAN接口发出。需要包含在此消息中的属性在以下小节中定义。

5.1.1. Client Identification Name
5.1.1. 客户识别名

An operator uses the Client Identification Name (CIN) to identify the HG. The HG sends the CIN to the HAAP for authentication and authorization as specified in [TS23.401]. It is REQUIRED that the GRE Tunnel Setup Request message sent out from the LTE WAN interface contain the CIN attribute while the GRE Tunnel Setup Request message sent out from the DSL WAN interface does not contain this attribute.

操作员使用客户识别名称(CIN)来识别HG。HG向HAAP发送CIN,以进行[TS23.401]中规定的身份验证和授权。要求从LTE WAN接口发送的GRE隧道设置请求消息包含CIN属性,而从DSL WAN接口发送的GRE隧道设置请求消息不包含此属性。

The CIN attribute has the following format:

CIN属性具有以下格式:

   +-+-+-+-+-+-+-+-+
   |Attribute Type |                   (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |   (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
   |  Client Identification Name       (40 bytes)  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
        
   +-+-+-+-+-+-+-+-+
   |Attribute Type |                   (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |   (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
   |  Client Identification Name       (40 bytes)  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
        

Attribute Type CIN, set to 3.

属性类型CIN,设置为3。

Attribute Length Set to 40.

属性长度设置为40。

Client Identification Name This is a 40-byte string value encoded in UTF-8 and set by the operator. It is used as the identification of the HG in the operator's network.

客户机标识名称这是一个40字节的字符串值,用UTF-8编码,由操作员设置。它用于识别运营商网络中的汞。

5.1.2. Session ID
5.1.2. 会话ID

This Session ID is generated by the HAAP when the LTE GRE Tunnel Setup Request message is received. The HAAP announces the Session ID to the HG in the LTE GRE Tunnel Setup Accept message. For those WAN interfaces that need to be bonded together, the HG MUST use the same Session ID. The HG MUST carry the Session ID attribute in each DSL GRE Tunnel Setup Request message. For the first time that the LTE GRE Tunnel Setup Request message is sent to the HAAP, the Session ID attribute need not be included. However, if the LTE GRE tunnel fails and the HG tries to revive it, the LTE GRE Tunnel Setup Request message MUST include the Session ID attribute.

当接收到LTE-GRE隧道设置请求消息时,该会话ID由HAAP生成。HAAP在LTE GRE隧道设置接受消息中向HG宣布会话ID。对于那些需要绑定在一起的WAN接口,HG必须使用相同的会话ID。HG必须在每个DSL GRE隧道设置请求消息中携带会话ID属性。对于第一次向HAAP发送LTE-GRE隧道设置请求消息,不需要包括会话ID属性。然而,如果LTE-GRE隧道失败并且HG尝试恢复它,则LTE-GRE隧道设置请求消息必须包括会话ID属性。

The Session ID attribute has the following format:

会话ID属性具有以下格式:

   +-+-+-+-+-+-+-+-+
   |Attribute Type |                   (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |   (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
   |  Session ID                       (4 bytes)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
        
   +-+-+-+-+-+-+-+-+
   |Attribute Type |                   (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |   (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
   |  Session ID                       (4 bytes)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
        

Attribute Type Session ID, set to 4.

属性类型会话ID,设置为4。

Attribute Length Set to 4.

属性长度设置为4。

Session ID An unsigned integer generated by the HAAP. It is used as the identification of bonded GRE tunnels.

会话ID由HAAP生成的无符号整数。它用于识别粘结GRE隧道。

5.1.3. DSL Synchronization Rate
5.1.3. DSL同步速率

The HG uses the DSL Synchronization Rate to notify the HAAP about the downstream bandwidth of the DSL link. The DSL GRE Tunnel Setup Request message MUST include the DSL Synchronization Rate attribute. The LTE GRE Tunnel Setup Request message SHOULD NOT include this attribute.

HG使用DSL同步速率通知HAAP DSL链路的下游带宽。DSL GRE隧道设置请求消息必须包括DSL同步速率属性。LTE GRE隧道设置请求消息不应包含此属性。

   +-+-+-+-+-+-+-+-+
   |Attribute Type |                   (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |   (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
   |  DSL Synchronization Rate         (4 bytes)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
        
   +-+-+-+-+-+-+-+-+
   |Attribute Type |                   (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |   (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
   |  DSL Synchronization Rate         (4 bytes)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
        

Attribute Type DSL Synchronization Rate, set to 7.

属性类型DSL同步速率,设置为7。

Attribute Length Set to 4.

属性长度设置为4。

DSL Synchronization Rate An unsigned integer measured in kbps.

DSL同步速率以kbps为单位测量的无符号整数。

5.2. GRE Tunnel Setup Accept
5.2. GRE隧道设置接受

The HAAP uses the GRE Tunnel Setup Accept message as the response to the GRE Tunnel Setup Request message. This message indicates acceptance of the tunnel establishment and carries parameters of the GRE tunnels. Attributes that need to be included in this message are defined below.

HAAP使用GRE Tunnel Setup Accept消息作为对GRE Tunnel Setup Request消息的响应。此消息表示接受隧道建设,并包含GRE隧道的参数。需要包含在此消息中的属性定义如下。

5.2.1. H IPv4 Address
5.2.1. H IPv4地址

The HAAP uses the H IPv4 Address attribute to inform the HG of the H IPv4 address. The HG uses the H IPv4 address as the destination endpoint IPv4 address of the GRE tunnels (the source endpoint IPv4 addresses of the GRE tunnels are the DSL WAN interface IP address (D) and the LTE WAN interface IP address (E), respectively, as shown in Figure 1). The LTE GRE Tunnel Setup Accept message MUST include the H IPv4 Address attribute.

HAAP使用H IPv4地址属性通知HG H IPv4地址。HG使用H IPv4地址作为GRE隧道的目标端点IPv4地址(GRE隧道的源端点IPv4地址分别是DSL WAN接口IP地址(D)和LTE WAN接口IP地址(E),如图1所示)。LTE GRE隧道设置接受消息必须包括H IPv4地址属性。

   +-+-+-+-+-+-+-+-+
   |Attribute Type |                   (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |   (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
   |  H IPv4 Address                   (4 bytes)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
        
   +-+-+-+-+-+-+-+-+
   |Attribute Type |                   (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |   (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
   |  H IPv4 Address                   (4 bytes)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
        

Attribute Type H IPv4 Address, set to 1.

属性类型H IPv4地址,设置为1。

Attribute Length Set to 4.

属性长度设置为4。

H IPv4 Address Set to the pre-configured IPv4 address (e.g., an IP address of a Line Card in the HAAP), which is used as the endpoint IP address of GRE tunnels by the HAAP.

H IPv4地址设置为预先配置的IPv4地址(例如,HAAP中线路卡的IP地址),HAAP将其用作GRE隧道的端点IP地址。

5.2.2. H IPv6 Address
5.2.2. H IPv6地址

The HAAP uses the H IPv6 Address attribute to inform the HG of the H IPv6 address. The HG uses the H IPv6 address as the destination endpoint IPv6 address of the GRE tunnels (the source endpoint IPv6 addresses of the GRE tunnels are the DSL WAN interface IP address (D) and the LTE WAN interface IP address (E), respectively, as shown in Figure 1).

HAAP使用H IPv6地址属性通知HG H IPv6地址。HG使用H IPv6地址作为GRE隧道的目标端点IPv6地址(GRE隧道的源端点IPv6地址分别是DSL WAN接口IP地址(D)和LTE WAN接口IP地址(E),如图1所示)。

The LTE GRE Tunnel Setup Accept message MUST include the H IPv6 Address attribute.

LTE GRE隧道设置接受消息必须包括H IPv6地址属性。

   +-+-+-+-+-+-+-+-+
   |Attribute Type |                   (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |   (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
   |  H IPv6 Address                   (16 bytes)  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
        
   +-+-+-+-+-+-+-+-+
   |Attribute Type |                   (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |   (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
   |  H IPv6 Address                   (16 bytes)  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
        

Attribute Type H IPv6 Address, set to 2.

属性类型H IPv6地址,设置为2。

Attribute Length Set to 16.

属性长度设置为16。

H IPv6 Address Set to the pre-configured IPv6 address (e.g., an IP address of a Line Card in the HAAP), which is used as the endpoint IP address of GRE tunnels by the HAAP.

H IPv6地址设置为预先配置的IPv6地址(例如,HAAP中线路卡的IP地址),HAAP将其用作GRE隧道的端点IP地址。

5.2.3. Session ID
5.2.3. 会话ID

The LTE GRE Tunnel Setup Accept message MUST include the Session ID attribute as defined in Section 5.1.2.

LTE GRE Tunnel Setup Accept消息必须包括第5.1.2节中定义的会话ID属性。

5.2.4. RTT Difference Threshold
5.2.4. RTT差分阈值

The HAAP uses the RTT Difference Threshold attribute to inform the HG of the acceptable threshold of the RTT difference between the DSL link and the LTE link. If the measured RTT difference exceeds this threshold, the HG SHOULD stop offloading traffic to the LTE GRE tunnel. The LTE GRE Tunnel Setup Accept message MUST include the RTT Difference Threshold attribute.

HAAP使用RTT差异阈值属性来通知HG DSL链路和LTE链路之间的RTT差异的可接受阈值。如果测量的RTT差异超过该阈值,HG应停止将流量卸载到LTE GRE隧道。LTE GRE隧道设置接受消息必须包括RTT差异阈值属性。

   +-+-+-+-+-+-+-+-+
   |Attribute Type |                   (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |   (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
   |  RTT Difference Threshold         (4 bytes)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
        
   +-+-+-+-+-+-+-+-+
   |Attribute Type |                   (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |   (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
   |  RTT Difference Threshold         (4 bytes)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
        

Attribute Type RTT Difference Threshold, set to 9.

属性类型RTT差异阈值,设置为9。

Attribute Length Set to 4.

属性长度设置为4。

RTT Difference Threshold An unsigned integer measured in milliseconds. This value can be chosen in the range 0 through 1000.

RTT差分阈值以毫秒为单位的无符号整数。该值可在0到1000范围内选择。

5.2.5. Bypass Bandwidth Check Interval
5.2.5. 旁路带宽检查间隔

The HAAP uses the Bypass Bandwidth Check Interval attribute to inform the HG of how frequently the bypass bandwidth should be checked. The HG should check the bypass bandwidth of the DSL WAN interface in each time period indicated by this interval. The LTE GRE Tunnel Setup Accept message MUST include the Bypass Bandwidth Check Interval attribute.

HAAP使用旁路带宽检查间隔属性通知HG应该检查旁路带宽的频率。HG应在该间隔指示的每个时间段内检查DSL WAN接口的旁路带宽。LTE GRE隧道设置接受消息必须包括旁路带宽检查间隔属性。

   +-+-+-+-+-+-+-+-+
   |Attribute Type |                   (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |   (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
   |  Bypass Bandwidth Check Interval  (4 bytes)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
        
   +-+-+-+-+-+-+-+-+
   |Attribute Type |                   (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |   (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
   |  Bypass Bandwidth Check Interval  (4 bytes)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
        

Attribute Type Bypass Bandwidth Check Interval, set to 10.

属性类型旁路带宽检查间隔,设置为10。

Attribute Length Set to 4.

属性长度设置为4。

Bypass Bandwidth Check Interval An unsigned integer measured in seconds. This value can be chosen in the range 10 through 300.

旁路带宽检查间隔以秒为单位的无符号整数。该值可在10至300范围内选择。

5.2.6. Active Hello Interval
5.2.6. 主动Hello间隔

The HAAP uses the Active Hello Interval attribute to inform the HG of the pre-configured interval for sending out GRE Tunnel Hellos. The HG should send out GRE Tunnel Hellos via both the DSL and LTE WAN interfaces in each time period as indicated by this interval. The LTE GRE Tunnel Setup Accept message MUST include the Active Hello Interval attribute.

HAAP使用activehello Interval属性通知HG发送GRE隧道Hello的预配置间隔。HG应在该间隔所示的每个时间段内通过DSL和LTE WAN接口发送GRE Tunnel Hello。LTE GRE Tunnel Setup Accept消息必须包含Active Hello Interval属性。

   +-+-+-+-+-+-+-+-+
   |Attribute Type |                   (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |   (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
   |  Active Hello Interval            (4 bytes)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
        
   +-+-+-+-+-+-+-+-+
   |Attribute Type |                   (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |   (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
   |  Active Hello Interval            (4 bytes)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
        

Attribute Type Active Hello Interval, set to 14.

属性类型活动Hello Interval,设置为14。

Attribute Length Set to 4.

属性长度设置为4。

Active Hello Interval An unsigned integer measured in seconds. This value can be chosen in the range 1 through 100.

活动Hello间隔以秒为单位的无符号整数。该值可在1到100范围内选择。

5.2.7. Hello Retry Times
5.2.7. 你好,重试时间

The HAAP uses the Hello Retry Times attribute to inform the HG of the retry times for sending GRE Tunnel Hellos. If the HG does not receive any acknowledgement from the HAAP for the number of GRE Tunnel Hello attempts specified in this attribute, the HG will declare a failure of the GRE tunnel. The LTE GRE Tunnel Setup Accept message MUST include the Hello Retry Times attribute.

HAAP使用Hello Retry Times属性通知HG发送GRE隧道Hello的重试时间。如果HG没有收到HAAP对此属性中指定的GRE隧道Hello尝试次数的任何确认,HG将声明GRE隧道失败。LTE GRE Tunnel Setup Accept消息必须包含Hello Retry Times属性。

   +-+-+-+-+-+-+-+-+
   |Attribute Type |                   (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |   (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
   |  Hello Retry Times                (4 bytes)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
        
   +-+-+-+-+-+-+-+-+
   |Attribute Type |                   (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |   (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
   |  Hello Retry Times                (4 bytes)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
        

Attribute Type Hello Retry Times, set to 15.

属性类型Hello重试次数,设置为15。

Attribute Length Set to 4.

属性长度设置为4。

Hello Retry Times An unsigned integer that takes values in the range 3 through 10.

Hello Retry乘以取值范围为3到10的无符号整数。

5.2.8. Idle Timeout
5.2.8. 空闲超时

The HAAP uses the Idle Timeout attribute to inform the HG of the pre-configured timeout value to terminate the DSL GRE tunnel. When an LTE GRE tunnel failure is detected, all traffic will be sent over the DSL GRE tunnel. If the failure of the LTE GRE tunnel lasts longer than the Idle Timeout, subsequent traffic will be sent over raw DSL rather than over a tunnel, and the DSL GRE tunnel SHOULD be terminated. The LTE GRE Tunnel Setup Accept message MUST include the Idle Timeout attribute.

HAAP使用Idle Timeout属性通知HG预先配置的超时值,以终止DSL GRE隧道。当检测到LTE GRE隧道故障时,所有流量将通过DSL GRE隧道发送。如果LTE GRE隧道的故障持续时间长于空闲超时,则随后的业务将通过原始DSL而不是通过隧道发送,并且DSL GRE隧道应终止。LTE GRE隧道设置接受消息必须包括空闲超时属性。

   +-+-+-+-+-+-+-+-+
   |Attribute Type |                   (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |   (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
   |  Idle Timeout                     (4 bytes)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
        
   +-+-+-+-+-+-+-+-+
   |Attribute Type |                   (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |   (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
   |  Idle Timeout                     (4 bytes)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
        

Attribute Type Idle Timeout, set to 16.

属性类型空闲超时,设置为16。

Attribute Length Set to 4.

属性长度设置为4。

Idle Timeout An unsigned integer measured in seconds. It takes values in the range 0 through 172,800 with a granularity of 60. The default value is 86,400 (24 hours). The value 0 indicates that the idle timer never expires.

空闲超时以秒为单位的无符号整数。它采用0到172800之间的值,粒度为60。默认值为86400(24小时)。值0表示空闲计时器永不过期。

5.2.9. Bonding Key Value
5.2.9. 键合键值

The HAAP uses the Bonding Key Value attribute to inform the HG of the number that is to be carried as the Key of the GRE header for subsequent control messages. The Bonding Key Value is generated by the HAAP and used for security purposes.

HAAP使用Bonding Key-Value属性通知HG将作为后续控制消息的GRE报头键携带的数字。绑定密钥值由HAAP生成并用于安全目的。

The method used to generate this number is left up to implementations. The pseudorandom number generator defined in ANSI X9.31, Appendix A.2.4 [ANSI-X9.31-1998] is RECOMMENDED. Note that random number generation "collisions" are allowed in the GRE Tunnel Bonding Protocol.

用于生成此数字的方法由实现决定。建议使用ANSI X9.31附录A.2.4[ANSI-X9.31-1998]中定义的伪随机数生成器。请注意,GRE隧道绑定协议中允许随机数生成“冲突”。

   +-+-+-+-+-+-+-+-+
   |Attribute Type |                   (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |   (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
   |  Bonding Key Value                (4 bytes)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
        
   +-+-+-+-+-+-+-+-+
   |Attribute Type |                   (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |   (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
   |  Bonding Key Value                (4 bytes)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
        

Attribute Type Bonding Key Value, set to 20.

属性类型键值,设置为20。

Attribute Length Set to 4.

属性长度设置为4。

Bonding Key Value A 32-bit random number generated by the HAAP.

键合键值由HAAP生成的32位随机数。

5.2.10. Configured DSL Upstream Bandwidth
5.2.10. 配置的DSL上行带宽

The HAAP obtains the upstream bandwidth of the DSL link from the management system and uses the Configured DSL Upstream Bandwidth attribute to inform the HG. The HG uses the received upstream bandwidth as the CIR [RFC2697] for the DSL link. The DSL GRE Tunnel Setup Accept message MUST include the Configured DSL Upstream Bandwidth attribute.

HAAP从管理系统获取DSL链路的上行带宽,并使用配置的DSL上行带宽属性通知HG。HG使用接收到的上行带宽作为DSL链路的CIR[RFC2697]。DSL GRE Tunnel Setup Accept消息必须包括已配置的DSL上行带宽属性。

   +-+-+-+-+-+-+-+-+
   |Attribute Type |                   (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |   (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
   | Configured DSL Upstream Bandwidth (4 bytes)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
        
   +-+-+-+-+-+-+-+-+
   |Attribute Type |                   (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |   (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
   | Configured DSL Upstream Bandwidth (4 bytes)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
        

Attribute Type Configured DSL Upstream Bandwidth, set to 22.

属性类型配置DSL上行带宽,设置为22。

Attribute Length Set to 4.

属性长度设置为4。

Configured DSL Upstream Bandwidth An unsigned integer measured in kbps.

配置的DSL上行带宽以kbps为单位测量的无符号整数。

5.2.11. Configured DSL Downstream Bandwidth
5.2.11. 配置的DSL下行带宽

The HAAP obtains the downstream bandwidth of the DSL link from the management system and uses the Configured DSL Downstream Bandwidth attribute to inform the HG. The HG uses the received downstream bandwidth as the base in calculating the bypassing bandwidth. The DSL GRE Tunnel Setup Accept message MUST include the Configured DSL Downstream Bandwidth attribute.

HAAP从管理系统获取DSL链路的下游带宽,并使用配置的DSL下游带宽属性通知HG。HG使用接收到的下游带宽作为计算旁路带宽的基础。DSL GRE Tunnel Setup Accept消息必须包括已配置的DSL下行带宽属性。

   +-+-+-+-+-+-+-+-+
   |Attribute Type |                   (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |   (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
   |Configured DSL Downstream Bandwidth(4 bytes)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
        
   +-+-+-+-+-+-+-+-+
   |Attribute Type |                   (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |   (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
   |Configured DSL Downstream Bandwidth(4 bytes)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
        

Attribute Type Configured DSL Downstream Bandwidth, set to 23.

属性类型配置DSL下行带宽,设置为23。

Attribute Length Set to 4.

属性长度设置为4。

Configured DSL Downstream Bandwidth An unsigned integer measured in kbps.

配置的DSL下行带宽以kbps为单位测量的无符号整数。

5.2.12. RTT Difference Threshold Violation
5.2.12. RTT差异阈值冲突

The HAAP uses the RTT Difference Threshold Violation attribute to inform the HG of the number of times in a row that the RTT Difference Threshold (see Section 5.2.4) may be violated before the HG MUST stop using the LTE GRE tunnel. If the RTT Difference Threshold is continuously violated for more than the indicated number of measurements, the HG MUST stop using the LTE GRE tunnel. The LTE GRE Tunnel Setup Accept message MUST include the RTT Difference Threshold Violation attribute.

HAAP使用RTT差异阈值违规属性通知HG在HG必须停止使用LTE GRE隧道之前可能违反RTT差异阈值(见第5.2.4节)的次数。如果连续违反RTT差异阈值超过指定的测量次数,HG必须停止使用LTE GRE隧道。LTE GRE隧道设置接受消息必须包括RTT差异阈值冲突属性。

   +-+-+-+-+-+-+-+-+
   |Attribute Type |                   (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |   (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
   |  RTT Diff Threshold Violation     (4 bytes)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
        
   +-+-+-+-+-+-+-+-+
   |Attribute Type |                   (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |   (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
   |  RTT Diff Threshold Violation     (4 bytes)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
        

Attribute Type RTT Difference Threshold Violation, set to 24.

属性类型RTT差异阈值冲突,设置为24。

Attribute Length Set to 4.

属性长度设置为4。

RTT Difference Threshold Violation An unsigned integer that takes values in the range 1 through 25. A typical value is 3.

RTT差分阈值冲突采用1到25范围内的值的无符号整数。典型值为3。

5.2.13. RTT Difference Threshold Compliance
5.2.13. RTT差分阈值符合性

The HAAP uses the RTT Difference Threshold Compliance attribute to inform the HG of the number of times in a row that the RTT Difference Threshold (see Section 5.2.4) must be compliant before use of the LTE GRE tunnel can be resumed. If the RTT Difference Threshold is continuously detected to be compliant across more than this number of measurements, the HG MAY resume using the LTE GRE tunnel. The LTE GRE Tunnel Setup Accept message MUST include the RTT Difference Threshold Compliance attribute.

HAAP使用RTT差分阈值符合性属性通知HG RTT差分阈值(见第5.2.4节)必须符合的连续次数,然后才能恢复LTE GRE隧道的使用。如果在超过此数量的测量中连续检测到RTT差异阈值符合要求,则HG可以使用LTE GRE隧道恢复。LTE GRE Tunnel Setup Accept消息必须包括RTT Difference Threshold Compliance属性。

   +-+-+-+-+-+-+-+-+
   |Attribute Type |                   (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |   (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
   |  RTT Diff Threshold Compliance    (4 bytes)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
        
   +-+-+-+-+-+-+-+-+
   |Attribute Type |                   (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |   (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
   |  RTT Diff Threshold Compliance    (4 bytes)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
        

Attribute Type RTT Difference Threshold Compliance, set to 25.

属性类型RTT差异阈值符合性,设置为25。

Attribute Length Set to 4.

属性长度设置为4。

RTT Difference Threshold Compliance An unsigned integer that takes values in the range 1 through 25. A typical value is 3.

RTT差分阈值符合性一个无符号整数,取值范围为1到25。典型值为3。

5.2.14. Idle Hello Interval
5.2.14. 空闲你好间隔

The HAAP uses the Idle Hello Interval attribute to inform the HG of the pre-configured interval for sending out GRE Tunnel Hellos when the subscriber is detected to be idle. The HG SHOULD begin to send out GRE Tunnel Hellos via both the DSL and LTE WAN interfaces in each time period as indicated by this interval, if the bonded tunnels have seen no traffic for a period longer than the "No Traffic Monitored Interval" (see Section 5.2.15). The LTE GRE Tunnel Setup Accept message MUST include the Idle Hello Interval attribute.

HAAP使用Idle Hello Interval属性通知HG当检测到订阅者空闲时发送GRE Tunnel Hello的预配置间隔。如果保税隧道在超过“无流量监控间隔”(见第5.2.15节)的时间段内未发现流量,则HG应在该间隔所示的每个时间段内开始通过DSL和LTE WAN接口发送GRE隧道Hello。LTE GRE Tunnel Setup Accept消息必须包含Idle Hello Interval属性。

   +-+-+-+-+-+-+-+-+
   |Attribute Type |                    (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |    (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
   |  Idle Hello Interval               (4 bytes)  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
        
   +-+-+-+-+-+-+-+-+
   |Attribute Type |                    (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |    (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
   |  Idle Hello Interval               (4 bytes)  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
        

Attribute Type Idle Hello Interval, set to 31.

属性类型Idle Hello Interval,设置为31。

Attribute Length Set to 4.

属性长度设置为4。

Idle Hello Interval An unsigned integer measured in seconds. This value can be chosen in the range 100 through 86,400 (24 hours) with a granularity of 100. The default value is 1800 (30 minutes).

空闲Hello Interval以秒为单位的无符号整数。该值可以在100到86400(24小时)范围内选择,粒度为100。默认值为1800(30分钟)。

5.2.15. No Traffic Monitored Interval
5.2.15. 无交通监控间隔

The HAAP uses the No Traffic Monitored Interval attribute to inform the HG of the pre-configured interval for switching the GRE Tunnel Hello mode. If traffic is detected on the bonded GRE tunnels before this interval expires, the HG SHOULD switch to the Active Hello Interval. The LTE GRE Tunnel Setup Accept message MUST include the No Traffic Monitored Interval attribute.

HAAP使用无流量监控间隔属性通知HG切换GRE隧道Hello模式的预配置间隔。如果在该间隔到期之前在保税GRE隧道上检测到流量,HG应切换到活动Hello间隔。LTE GRE Tunnel Setup Accept(LTE GRE隧道设置接受)消息必须包含无流量监控间隔属性。

   +-+-+-+-+-+-+-+-+
   |Attribute Type |                    (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |    (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
   |  No Traffic Monitored Interval     (4 bytes)  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
        
   +-+-+-+-+-+-+-+-+
   |Attribute Type |                    (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |    (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
   |  No Traffic Monitored Interval     (4 bytes)  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
        

Attribute Type No Traffic Monitored Interval, set to 32.

属性类型无流量监控间隔,设置为32。

Attribute Length Set to 4.

属性长度设置为4。

No Traffic Monitored Interval An unsigned integer measured in seconds. This value is in the range 30 through 86,400 (24 hours). The default value is 60.

无流量监控间隔以秒为单位测量的无符号整数。该值在30到86400(24小时)之间。默认值为60。

5.3. GRE Tunnel Setup Deny
5.3. GRE隧道设置拒绝

The HAAP MUST send the GRE Tunnel Setup Deny message to the HG if the GRE Tunnel Setup Request from this HG is denied. The HG MUST terminate the GRE tunnel setup process as soon as it receives the GRE Tunnel Setup Deny message.

如果来自HG的GRE隧道设置请求被拒绝,HAAP必须向HG发送GRE隧道设置拒绝消息。HG必须在收到GRE隧道设置拒绝消息后立即终止GRE隧道设置过程。

5.3.1. Error Code
5.3.1. 错误代码

The HAAP uses the Error Code attribute to inform the HG of the error code. The error code depicts why the GRE Tunnel Setup Request is denied. Both the LTE GRE Tunnel Setup Deny message and the DSL GRE Tunnel Setup Deny message MUST include the Error Code attribute.

HAAP使用Error Code属性通知HG错误代码。错误代码描述了GRE隧道设置请求被拒绝的原因。LTE GRE隧道设置拒绝消息和DSL GRE隧道设置拒绝消息都必须包含错误代码属性。

   +-+-+-+-+-+-+-+-+
   |Attribute Type |                    (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |    (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
   |  Error Code                        (4 bytes)  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
        
   +-+-+-+-+-+-+-+-+
   |Attribute Type |                    (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |    (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
   |  Error Code                        (4 bytes)  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
        

Attribute Type Error Code, set to 17.

属性类型错误代码,设置为17。

Attribute Length Set to 4.

属性长度设置为4。

Error Code An unsigned integer. The list of codes is as follows:

错误代码为无符号整数。代码列表如下:

1: The HAAP was not reachable over LTE during the GRE Tunnel Setup Request.

1:在GRE隧道设置请求期间,无法通过LTE访问HAAP。

2: The HAAP was not reachable via DSL during the GRE Tunnel Setup Request.

2:在GRE隧道设置请求期间,无法通过DSL访问HAAP。

3: The LTE GRE tunnel to the HAAP failed.

3:到HAAP的LTE GRE隧道失败。

4: The DSL GRE tunnel to the HAAP failed.

4:到HAAP的DSL GRE隧道失败。

5: The given DSL User ID is not allowed to use the GRE Tunnel Bonding service.

5:给定的DSL用户ID不允许使用GRE隧道绑定服务。

6: The given User Alias / User ID (Globally Unique Identifier (GUID)) is not allowed to use the GRE Tunnel Bonding service.

6:不允许给定的用户别名/用户ID(全局唯一标识符(GUID))使用GRE隧道绑定服务。

7: The LTE and DSL User IDs do not match.

7:LTE和DSL用户ID不匹配。

8: The HAAP denied the GRE Tunnel Setup Request because a bonding session with the same User ID already exists.

8:HAAP拒绝GRE隧道设置请求,因为已存在具有相同用户ID的绑定会话。

9: The HAAP denied the GRE Tunnel Setup Request because the user's CIN is not permitted.

9:HAAP拒绝GRE隧道设置请求,因为不允许用户的CIN。

10: The HAAP terminated a GRE Tunnel Bonding session for maintenance reasons.

10:HAAP出于维护原因终止了GRE隧道连接会话。

11: There was a communication error between the HAAP and the management system during the LTE GRE Tunnel Setup Request.

11:在LTE GRE隧道设置请求期间,HAAP和管理系统之间存在通信错误。

12: There was a communication error between the HAAP and the management system during the DSL GRE Tunnel Setup Request.

12:在DSL GRE隧道设置请求期间,HAAP和管理系统之间存在通信错误。

5.4. GRE Tunnel Hello
5.4. GRE Tunnel你好

After the DSL/LTE GRE tunnel is established, the HG begins to periodically send out GRE Tunnel Hello messages via the tunnel; the HAAP acknowledges the HG's messages by returning GRE Tunnel Hello messages to the HG. This continues until the tunnel is terminated.

DSL/LTE GRE隧道建立后,HG开始通过隧道周期性发送GRE隧道Hello消息;HAAP通过向HG返回GRE Tunnel Hello消息来确认HG的消息。这将一直持续到隧道终止。

5.4.1. Timestamp
5.4.1. 时间戳

The HAAP uses the Timestamp attribute to inform the HG of the timestamp value that is used for RTT calculation. Both the LTE GRE Tunnel Hello message and the DSL GRE Tunnel Hello message MUST include the Timestamp attribute.

HAAP使用Timestamp属性通知HG用于RTT计算的时间戳值。LTE GRE隧道Hello消息和DSL GRE隧道Hello消息都必须包含时间戳属性。

   +-+-+-+-+-+-+-+-+
   |Attribute Type |                    (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |    (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
   |  Timestamp                         (8 bytes)  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
        
   +-+-+-+-+-+-+-+-+
   |Attribute Type |                    (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |    (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
   |  Timestamp                         (8 bytes)  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
        

Attribute Type Timestamp, set to 5.

属性类型时间戳,设置为5。

Attribute Length Set to 8.

属性长度设置为8。

Timestamp The time since the system restarted. The high-order 4 bytes indicate an unsigned integer in units of 1 second; the low-order 4 bytes indicate an unsigned integer in units of 1 millisecond.

时间戳系统重新启动后的时间。高位4字节表示以1秒为单位的无符号整数;低位4字节表示以1毫秒为单位的无符号整数。

5.4.2. IPv6 Prefix Assigned by HAAP
5.4.2. HAAP分配的IPv6前缀

The HAAP uses the IPv6 Prefix Assigned by HAAP attribute to inform the HG of the assigned IPv6 prefix. This IPv6 prefix is to be captured via lawful intercept. Both the LTE GRE Tunnel Hello message and the DSL GRE Tunnel Hello message MUST include the IPv6 Prefix Assigned by HAAP attribute.

HAAP使用HAAP属性分配的IPv6前缀通知HG分配的IPv6前缀。此IPv6前缀将通过合法拦截捕获。LTE GRE隧道Hello消息和DSL GRE隧道Hello消息都必须包含由HAAP属性分配的IPv6前缀。

   +-+-+-+-+-+-+-+-+
   |Attribute Type |                    (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |    (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
   |  IPv6 Prefix Assigned by HAAP      (16 bytes) |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
        
   +-+-+-+-+-+-+-+-+
   |Attribute Type |                    (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |    (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
   |  IPv6 Prefix Assigned by HAAP      (16 bytes) |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
        

Attribute Type IPv6 Prefix Assigned by HAAP, set to 13.

HAAP分配的属性类型IPv6前缀,设置为13。

Attribute Length Set to 17.

属性长度设置为17。

IPv6 Prefix Assigned by HAAP The highest-order 16 bytes encode an IPv6 address. The lowest-order 1 byte encodes the prefix length. These two values are put together to represent an IPv6 prefix.

由HAAP分配的IPv6前缀最高16个字节编码IPv6地址。最低顺序1字节编码前缀长度。这两个值放在一起表示IPv6前缀。

5.5. GRE Tunnel Tear Down
5.5. GRE隧道拆除

The HAAP can terminate a DSL/LTE GRE tunnel by sending the GRE Tunnel Tear Down message to the HG via the tunnel. The Error Code attribute as defined in Section 5.3.1 MUST be included in this message. After receiving the GRE Tunnel Tear Down message, the HG removes the IP address of H, which is the destination IP addresses of the DSL and LTE GRE tunnels.

HAAP可以通过通过隧道向HG发送GRE隧道拆除消息来终止DSL/LTE GRE隧道。此消息中必须包含第5.3.1节中定义的错误代码属性。在接收到GRE隧道拆除消息后,HG移除H的IP地址,该IP地址是DSL和LTE GRE隧道的目标IP地址。

5.6. GRE Tunnel Notify
5.6. GRE隧道通知

The HG and the HAAP use the GRE Tunnel Notify message, which is transmitted through either the DSL GRE tunnel or the LTE GRE tunnel, to notify each other about their status regarding the DSL/LTE GRE tunnels, the information for the bonded tunnels, the actions that need to be taken, etc.

HG和HAAP使用GRE隧道通知消息(通过DSL GRE隧道或LTE GRE隧道传输)相互通知关于DSL/LTE GRE隧道的状态、保税隧道的信息、需要采取的行动等。

Usually, the receiver just sends the received attributes back as the acknowledgement for each GRE Tunnel Notify message. However, there is an exception for the Filter List Package: since the size of the Filter List Package attribute can be very large, a special attribute -- the Filter List Package ACK attribute -- is used as the acknowledgement (see Section 5.6.12).

通常,接收方只是将接收到的属性作为每个GRE Tunnel Notify消息的确认发送回。但是,筛选器列表包有一个例外:由于筛选器列表包属性的大小可能非常大,因此使用一个特殊属性(筛选器列表包ACK属性)作为确认(见第5.6.12节)。

Attributes that need to be included in the GRE Tunnel Notify message are defined below.

需要包含在GRE Tunnel Notify消息中的属性定义如下。

5.6.1. Bypass Traffic Rate
5.6.1. 绕行交通率

There are a few types of traffic that need to be transmitted over the raw DSL WAN interface rather than the bonded GRE tunnels. The HG has to set aside bypass bandwidth on the DSL WAN interface for these traffic types. Therefore, the available bandwidth of the DSL GRE tunnel is the entire DSL WAN interface bandwidth minus the occupied bypass bandwidth.

有几种类型的流量需要通过原始DSL WAN接口而不是绑定的GRE隧道传输。HG必须在DSL WAN接口上为这些流量类型留出旁路带宽。因此,DSL GRE隧道的可用带宽是整个DSL WAN接口带宽减去占用的旁路带宽。

The HG uses the Bypass Traffic Rate attribute to inform the HAAP of the downstream bypass bandwidth for the DSL WAN interface. The Bypass Traffic Rate attribute will be included in the DSL GRE Tunnel Notify message. The HAAP calculates the available downstream bandwidth for the DSL GRE tunnel as the Configured DSL Downstream Bandwidth minus the bypass bandwidth provided by the HG. The available DSL bandwidth will be used as the CIR of the coloring system [RFC2697].

HG使用旁路业务速率属性通知HAAP DSL WAN接口的下游旁路带宽。旁路流量率属性将包含在DSL GRE隧道通知消息中。HAAP将DSL GRE隧道的可用下游带宽计算为配置的DSL下游带宽减去HG提供的旁路带宽。可用DSL带宽将用作着色系统的CIR[RFC2697]。

   +-+-+-+-+-+-+-+-+
   |Attribute Type |                    (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |    (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
   |  Bypass Traffic Rate               (4 bytes)  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
        
   +-+-+-+-+-+-+-+-+
   |Attribute Type |                    (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |    (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
   |  Bypass Traffic Rate               (4 bytes)  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
        

Attribute Type Bypass Traffic Rate, set to 6.

属性类型旁路通信速率,设置为6。

Attribute Length Set to 4.

属性长度设置为4。

Bypass Traffic Rate An unsigned integer measured in kbps.

旁路流量率以kbps为单位测量的无符号整数。

5.6.2. Filter List Package
5.6.2. 筛选列表包

The HAAP uses the Filter List Package attribute to inform the HG of the service types that need to bypass the bonded GRE tunnels. The full list of all Filter Items may be given by a series of Filter List Package attributes with each specifying a partial list. At the HG, a full list of Filter Items is maintained. Also, the HG needs to maintain an exception list of Filter Items. For example, the packets carrying the control messages defined in this document should be excluded from the filter list.

HAAP使用Filter List Package属性通知HG需要绕过绑定GRE隧道的服务类型。所有过滤器项目的完整列表可以由一系列过滤器列表包属性给出,每个属性指定一个部分列表。在HG,维护完整的过滤器项目列表。此外,HG需要维护一个过滤项的例外列表。例如,携带本文档中定义的控制消息的数据包应该从过滤器列表中排除。

Incoming packets that match a Filter Item in the filter list while not matching any item in the exception list MUST be transmitted over raw DSL rather than the bonded GRE tunnels. Both the LTE GRE Tunnel Notify message and the DSL GRE Tunnel Notify message MAY include the Filter List Package attribute. The DSL GRE Tunnel Notify message is preferred.

与筛选器列表中的筛选器项匹配但与异常列表中的任何项不匹配的传入数据包必须通过原始DSL而不是绑定的GRE隧道传输。LTE-GRE隧道通知消息和DSL-GRE隧道通知消息都可以包括过滤器列表包属性。首选DSL GRE隧道通知消息。

   +-+-+-+-+-+-+-+-+
   |Attribute Type |                    (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |    (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
   |  Filter List TLV                   (variable) ~
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
        
   +-+-+-+-+-+-+-+-+
   |Attribute Type |                    (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |    (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
   |  Filter List TLV                   (variable) ~
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
        

Attribute Type Filter List Package, set to 8.

属性类型筛选器列表包,设置为8。

Attribute Length The total length of the Filter List TLV. The maximum allowed length is 969 bytes.

属性长度筛选器列表TLV的总长度。允许的最大长度为969字节。

Filter List TLV The Filter List TLV occurs one time in a Filter List Package attribute. It has the following format:

筛选器列表TLV筛选器列表TLV在筛选器列表包属性中出现一次。其格式如下:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                  Commit_Count                                 |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      Packet_Sum               |         Packet_ID             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                         Filter Item (1)                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                         ......                                |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                         Filter Item (n)                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                  Commit_Count                                 |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      Packet_Sum               |         Packet_ID             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                         Filter Item (1)                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                         ......                                |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                         Filter Item (n)                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        

where each Filter Item is of the following format:

其中,每个过滤器项的格式如下:

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |         Type                  |          Length               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |         Enable                |     Description Length        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ~                 Description Value                             ~
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ~                        Value                                  ~
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |         Type                  |          Length               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |         Enable                |     Description Length        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ~                 Description Value                             ~
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ~                        Value                                  ~
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        

Commit_Count An unsigned integer that identifies the version of the Filter Item list. The version is shared by all Filter List Packages and increases monotonically by one for each new Filter Item list. The HG MUST refresh its Filter Item list when a new Commit_Count is received.

Commit\u Count一个无符号整数,用于标识筛选器项列表的版本。该版本由所有筛选器列表包共享,并且对于每个新的筛选器项列表,该版本单调增加一个。当收到新的提交计数时,HG必须刷新其筛选项列表。

Packet_Sum If a single Filter List Package attribute might make the control message larger than the MTU, fragmentation is used. The Packet_Sum indicates the total number of fragments.

数据包总和如果单个筛选器列表数据包属性可能使控制消息大于MTU,则使用分段。数据包的总和表示片段的总数。

Packet_ID The fragmentation index for this Filter List Package attribute. Each fragment is numbered starting at 1 and increasing by one up to Packet_Sum.

Packet_ID此筛选器列表包属性的碎片索引。每个片段从1开始编号,并增加1,直至数据包总和。

Type The Type of the Filter Item. Currently, the following types are supported:

键入筛选器项的类型。目前,支持以下类型:

                       Filter Item                  Type
                   ===========================   ============
                   FQDN [RFC7031]                    1
                   DSCP [RFC2724]                    2
                   Destination Port                  3
                   Destination IP                    4
                   Destination IP & Port             5
                   Source Port                       6
                   Source IP                         7
                   Source IP & Port                  8
                   Source MAC                        9
                   Protocol                          10
                   Source IP Range                   11
                   Destination IP Range              12
                   Source IP Range & Port            13
                   Destination IP Range & Port       14
        
                       Filter Item                  Type
                   ===========================   ============
                   FQDN [RFC7031]                    1
                   DSCP [RFC2724]                    2
                   Destination Port                  3
                   Destination IP                    4
                   Destination IP & Port             5
                   Source Port                       6
                   Source IP                         7
                   Source IP & Port                  8
                   Source MAC                        9
                   Protocol                          10
                   Source IP Range                   11
                   Destination IP Range              12
                   Source IP Range & Port            13
                   Destination IP Range & Port       14
        

Other values are reserved for future use and MUST be ignored on receipt.

其他值保留供将来使用,在收到时必须忽略。

Length The length of the Filter Item in bytes. Type and Length are excluded.

Length筛选器项的长度(以字节为单位)。不包括类型和长度。

Enable An integer that indicates whether or not the Filter Item is enabled. A value of 1 means "enabled", and a value of 0 means "disabled". Other possible values are reserved and MUST be ignored on receipt.

启用一个整数,该整数指示是否启用筛选项。值1表示“已启用”,值0表示“已禁用”。其他可能的值是保留的,在收到时必须忽略。

Description Length The length of the Description Value in bytes.

描述长度描述值的长度(字节)。

Description Value A variable-length string value encoded in UTF-8 that describes the Filter List TLV (e.g., "FQDN").

描述值UTF-8中编码的可变长度字符串值,用于描述筛选器列表TLV(例如,“FQDN”)。

Value A variable-length string encoded in UTF-8 that specifies the value of the Filter Item (e.g., "www.yahoo.com"). As an example, Type = 1 and Value = "www.yahoo.com" mean that packets whose FQDN field equals "www.yahoo.com" match the Filter Item. "Source MAC" (source Media Access Control address) values are specified using hexadecimal numbers. Port numbers are decimals

值以UTF-8编码的可变长度字符串,用于指定筛选器项的值(例如,“www.yahoo.com”)。例如,Type=1和Value=“www.yahoo.com”表示其FQDN字段等于“www.yahoo.com”的数据包与筛选器项匹配。“源MAC”(源媒体访问控制地址)值使用十六进制数指定。端口号是小数

as assigned by IANA in [Port-NO]. For the "Protocol" type, the value could be either a decimal or a keyword specified by IANA in [Pro-NO]. The formats for IP addresses and IP address ranges are defined in [RFC4632] and [RFC4291] for IPv4 and IPv6, respectively. A Filter Item of Type 5, 8, 13, or 14 is a combination of two parameters; values for the two parameters are separated by a colon (":").

由IANA在[端口号]中指定。对于“协议”类型,值可以是十进制或IANA在[Pro NO]中指定的关键字。IPv4和IPv6的[RFC4632]和[RFC4291]中分别定义了IP地址和IP地址范围的格式。类型5、8、13或14的过滤器项是两个参数的组合;两个参数的值用冒号(“:”)分隔。

5.6.3. Switching to DSL Tunnel
5.6.3. 切换到DSL隧道

If the RTT difference is continuously detected to be in violation of the RTT Difference Threshold (see Section 5.2.4) more than the number of times specified in the RTT Difference Threshold Violation attribute (see Section 5.2.12), the HG uses the Switching to DSL Tunnel attribute to inform the HAAP to use the DSL GRE tunnel only. When the HAAP receives this attribute, it MUST begin to transmit downstream traffic to this HG solely over the DSL GRE tunnel. The DSL GRE Tunnel Notify message MAY include the Switching to DSL Tunnel attribute.

如果连续检测到RTT差异违反RTT差异阈值(见第5.2.4节)的次数超过RTT差异阈值违反属性(见第5.2.12节)中规定的次数,HG使用切换到DSL隧道属性通知HAAP仅使用DSL GRE隧道。当HAAP接收到该属性时,它必须开始仅通过DSL GRE隧道向该HG发送下游流量。DSL GRE Tunnel Notify消息可以包括切换到DSL Tunnel属性。

   +-+-+-+-+-+-+-+-+
   |Attribute Type |                    (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |    (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        
   +-+-+-+-+-+-+-+-+
   |Attribute Type |                    (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |    (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        

Attribute Type Switching to DSL Tunnel, set to 11.

属性类型切换到DSL隧道,设置为11。

Attribute Length Set to 0.

属性长度设置为0。

5.6.4. Overflowing to LTE Tunnel
5.6.4. 溢出至LTE隧道

If the RTT difference is continuously detected to not be in violation of the RTT Difference Threshold (see Section 5.2.4) more than the number of times specified in the RTT Difference Threshold Compliance attribute (see Section 5.2.13), the HG uses the Overflowing to LTE Tunnel attribute to inform the HAAP that the LTE GRE tunnel can be used again. The DSL GRE Tunnel Notify message MAY include the Overflowing to LTE Tunnel attribute.

如果连续检测到RTT差异未违反RTT差异阈值(见第5.2.4节)超过RTT差异阈值符合性属性(见第5.2.13节)中规定的次数,HG使用溢出到LTE隧道属性通知HAAP LTE GRE隧道可以再次使用。DSL GRE隧道通知消息可以包括溢出到LTE隧道属性。

   +-+-+-+-+-+-+-+-+
   |Attribute Type |                    (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |    (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        
   +-+-+-+-+-+-+-+-+
   |Attribute Type |                    (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |    (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        

Attribute Type Overflowing to LTE Tunnel, set to 12.

属性类型溢出到LTE隧道,设置为12。

Attribute Length Set to 0.

属性长度设置为0。

5.6.5. DSL Link Failure
5.6.5. DSL链路故障

When the HG detects that the DSL WAN interface status is "down", it MUST tear down the DSL GRE tunnel. It informs the HAAP about the failure by using the DSL Link Failure attribute. The HAAP MUST tear down the DSL GRE tunnel upon receipt of the DSL Link Failure attribute. The DSL Link Failure attribute SHOULD be carried in the LTE GRE Tunnel Notify message.

当HG检测到DSL WAN接口状态为“关闭”时,它必须关闭DSL GRE隧道。它通过使用DSL链路故障属性通知HAAP故障。HAAP必须在收到DSL链路故障属性后拆除DSL GRE隧道。应在LTE GRE隧道通知消息中携带DSL链路故障属性。

   +-+-+-+-+-+-+-+-+
   |Attribute Type |                    (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |    (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        
   +-+-+-+-+-+-+-+-+
   |Attribute Type |                    (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |    (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        

Attribute Type DSL Link Failure, set to 18.

属性类型DSL链路故障,设置为18。

Attribute Length Set to 0.

属性长度设置为0。

5.6.6. LTE Link Failure
5.6.6. LTE链路故障

When the HG detects that the LTE WAN interface status is "down", it MUST tear down the LTE GRE tunnel. It informs the HAAP about the failure by using the LTE Link Failure attribute. The HAAP MUST tear down the LTE GRE tunnel upon receipt of the LTE Link Failure attribute. The LTE Link Failure attribute SHOULD be carried in the DSL GRE Tunnel Notify message.

当HG检测到LTE WAN接口状态为“关闭”时,它必须关闭LTE GRE隧道。它使用LTE链路故障属性通知HAAP故障。HAAP必须在接收到LTE链路故障属性后拆除LTE GRE隧道。LTE链路故障属性应在DSL GRE隧道通知消息中携带。

   +-+-+-+-+-+-+-+-+
   |Attribute Type |                    (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |    (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        
   +-+-+-+-+-+-+-+-+
   |Attribute Type |                    (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |    (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        

Attribute Type LTE Link Failure, set to 19.

属性类型LTE链路故障,设置为19。

Attribute Length Set to 0.

属性长度设置为0。

5.6.7. IPv6 Prefix Assigned to Host
5.6.7. 分配给主机的IPv6前缀

If the HG changes the IPv6 prefix assigned to the host, it uses the IPv6 Prefix Assigned to Host attribute to inform the HAAP. Both the LTE GRE Tunnel Notify message and the DSL GRE Tunnel Notify message MAY include the IPv6 Prefix Assigned to Host attribute.

如果HG更改分配给主机的IPv6前缀,它将使用分配给主机的IPv6前缀属性通知HAAP。LTE GRE隧道通知消息和DSL GRE隧道通知消息都可以包括分配给主机属性的IPv6前缀。

   +-+-+-+-+-+-+-+-+
   |Attribute Type |                    (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |    (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
   |  IPv6 Prefix Assigned to Host      (16 bytes) |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
        
   +-+-+-+-+-+-+-+-+
   |Attribute Type |                    (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |    (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
   |  IPv6 Prefix Assigned to Host      (16 bytes) |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
        

Attribute Type IPv6 Prefix Assigned to Host, set to 21.

分配给主机的属性类型IPv6前缀,设置为21。

Attribute Length Set to 17.

属性长度设置为17。

IPv6 Prefix Assigned to Host The highest-order 16 bytes encode an IPv6 address. The lowest-order 1 byte encodes the prefix length. These two values are put together to represent an IPv6 prefix.

分配给主机的IPv6前缀最高顺序为16字节,用于编码IPv6地址。最低顺序1字节编码前缀长度。这两个值放在一起表示IPv6前缀。

5.6.8. Diagnostic Start: Bonding Tunnel
5.6.8. 诊断启动:接合通道

The HG uses the Diagnostic Start: Bonding Tunnel attribute to inform the HAAP to switch to diagnostic mode to test the performance of the entire bonding tunnel. The Diagnostic Start: Bonding Tunnel attribute SHOULD be carried in the DSL GRE Tunnel Notify message.

HG使用Diagnostic Start:Bonding Tunnel属性通知HAAP切换到诊断模式以测试整个绑定通道的性能。DSL GRE Tunnel Notify消息中应包含Diagnostic Start:Bonding Tunnel属性。

   +-+-+-+-+-+-+-+-+
   |Attribute Type |                    (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |    (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        
   +-+-+-+-+-+-+-+-+
   |Attribute Type |                    (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |    (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        

Attribute Type Diagnostic Start: Bonding Tunnel, set to 26.

属性类型诊断开始:粘合通道,设置为26。

Attribute Length Set to 0.

属性长度设置为0。

5.6.9. Diagnostic Start: DSL Tunnel
5.6.9. 诊断启动:DSL隧道

The HG uses the Diagnostic Start: DSL Tunnel attribute to inform the HAAP to switch to diagnostic mode to test the performance of the DSL GRE tunnel. The Diagnostic Start: DSL Tunnel attribute SHOULD be carried in the DSL GRE Tunnel Notify message.

HG使用Diagnostic Start:DSL Tunnel属性通知HAAP切换到诊断模式以测试DSL GRE隧道的性能。诊断开始:DSL隧道属性应包含在DSL GRE隧道通知消息中。

   +-+-+-+-+-+-+-+-+
   |Attribute Type |                    (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |    (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        
   +-+-+-+-+-+-+-+-+
   |Attribute Type |                    (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |    (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        

Attribute Type Diagnostic Start: DSL Tunnel, set to 27.

属性类型诊断开始:DSL隧道,设置为27。

Attribute Length Set to 0.

属性长度设置为0。

5.6.10. Diagnostic Start: LTE Tunnel
5.6.10. 诊断启动:LTE隧道

The HG uses the Diagnostic Start: LTE Tunnel attribute to inform the HAAP to switch to diagnostic mode to test the performance of the LTE GRE tunnel. The Diagnostic Start: LTE Tunnel attribute SHOULD be carried in the DSL GRE Tunnel Notify message.

HG使用Diagnostic Start:LTE Tunnel属性通知HAAP切换到诊断模式以测试LTE GRE隧道的性能。诊断开始:LTE隧道属性应在DSL GRE隧道通知消息中携带。

   +-+-+-+-+-+-+-+-+
   |Attribute Type |                    (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |    (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        
   +-+-+-+-+-+-+-+-+
   |Attribute Type |                    (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |    (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        

Attribute Type Diagnostic Start: LTE Tunnel, set to 28.

属性类型诊断开始:LTE隧道,设置为28。

Attribute Length Set to 0.

属性长度设置为0。

5.6.11. Diagnostic End
5.6.11. 诊断端

The HG uses the Diagnostic End attribute to inform the HAAP to stop operating in diagnostic mode. The Diagnostic End attribute SHOULD be carried in the DSL GRE Tunnel Notify message.

HG使用诊断结束属性通知HAAP停止在诊断模式下运行。诊断结束属性应包含在DSL GRE隧道通知消息中。

   +-+-+-+-+-+-+-+-+
   |Attribute Type |                    (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |    (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        
   +-+-+-+-+-+-+-+-+
   |Attribute Type |                    (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |    (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        

Attribute Type Diagnostic End, set to 29.

属性类型诊断结束,设置为29。

Attribute Length Set to 0.

属性长度设置为0。

5.6.12. Filter List Package ACK
5.6.12. 过滤列表包确认

The HG uses the Filter List Package ACK attribute to acknowledge the Filter List Package sent by the HAAP. Both the LTE GRE Tunnel Notify message and the DSL GRE Tunnel Notify message MAY include the Filter List Package ACK attribute.

HG使用Filter-List-Package-ACK属性确认HAAP发送的Filter-List包。LTE GRE隧道通知消息和DSL GRE隧道通知消息都可以包括过滤器列表包ACK属性。

   +-+-+-+-+-+-+-+-+
   |Attribute Type |                    (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |    (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
   |  Filter List Package ACK           (5 bytes)  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
        
   +-+-+-+-+-+-+-+-+
   |Attribute Type |                    (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |    (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
   |  Filter List Package ACK           (5 bytes)  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
        

Attribute Type Filter List Package ACK, set to 30.

属性类型筛选器列表包确认,设置为30。

Attribute Length Set to 5.

属性长度设置为5。

Filter List Package ACK The highest-order 4 bytes are the Commit_Count as defined in Section 5.6.2. The lowest-order 1 byte encodes the following error codes:

过滤列表包确认最高顺序4字节为第5.6.2节中定义的提交计数。最低顺序1字节编码以下错误代码:

0: The Filter List Package is acknowledged.

0:已确认筛选器列表包。

1: The Filter List Package is not acknowledged. The HG is a new subscriber and has not ever received a Filter List Package. In this case, the HAAP SHOULD tear down the bonding tunnels and force the HG to re-establish the GRE tunnels.

1:未确认筛选器列表包。HG是一个新订户,从未收到过筛选器列表包。在这种情况下,HAAP应拆除粘结隧道,并迫使HG重新建立GRE隧道。

2: The Filter List Package is not acknowledged. The HG has already gotten a valid Filter List Package. The filter list on the HG will continue to be used, while the HAAP need not do anything.

2:未确认筛选器列表包。HG已经获得了一个有效的筛选器列表包。HG上的过滤器列表将继续使用,而HAAP不需要做任何事情。

5.6.13. Switching to Active Hello State
5.6.13. 切换到活动Hello状态

If traffic is being sent/received over the bonding GRE tunnels before the "No Traffic Monitored Interval" expires (see Section 5.2.15), the HG sends the HAAP a GRE Tunnel Notify message containing the Switching to Active Hello State attribute.

如果在“无流量监控间隔”到期之前(见第5.2.15节),通过绑定GRE隧道发送/接收流量,HG将发送HAAP a GRE隧道通知消息,其中包含切换到活动Hello状态属性。

The HAAP will switch to Active Hello State and send the HG a GRE Tunnel Notify message carrying the Switching to Active Hello State attribute as the ACK.

HAAP将切换到活动Hello状态,并发送带有切换到活动Hello状态属性的HG a GRE Tunnel Notify消息作为ACK。

When the HG receives the ACK, it will switch to Active Hello State, start RTT detection, and start sending GRE Tunnel Hello messages with the Active Hello Interval (see Section 5.2.6).

当HG收到ACK时,它将切换到活动Hello状态,启动RTT检测,并开始发送具有活动Hello间隔的GRE Tunnel Hello消息(参见第5.2.6节)。

   +-+-+-+-+-+-+-+-+
   |Attribute Type |                    (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |    (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        
   +-+-+-+-+-+-+-+-+
   |Attribute Type |                    (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |    (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        

Attribute Type Switching to Active Hello State, set to 33.

属性类型切换到活动Hello状态,设置为33。

Attribute Length Set to 0.

属性长度设置为0。

5.6.14. Switching to Idle Hello State
5.6.14. 切换到空闲Hello状态

The HG initiates switching to Idle Hello State when the bonding of GRE tunnels is successfully established and the LTE GRE Tunnel Setup Accept message carrying the Idle Hello Interval attribute (see Section 5.2.14) is received. The HG sends the HAAP a GRE Tunnel Notify message containing the Switching to Idle Hello State attribute.

当成功建立GRE隧道的连接并且接收到带有空闲Hello间隔属性(参见第5.2.14节)的LTE GRE隧道设置接受消息时,HG启动切换到空闲Hello状态。HG向HAAP发送一条包含切换到空闲Hello状态属性的GRE Tunnel Notify消息。

The HAAP will switch to Idle Hello State, clear RTT state, and send the HG a GRE Tunnel Notify message carrying the Switching to Idle Hello State attribute as the ACK.

HAAP将切换到空闲Hello状态,清除RTT状态,并发送带有切换到空闲Hello状态属性的HG a GRE Tunnel Notify消息作为ACK。

When the HG receives the ACK, it will (1) switch to Idle Hello State, (2) stop RTT detection and clear RTT state, and (3) start sending GRE Tunnel Hello messages with the Idle Hello Interval (see Section 5.2.14).

当HG收到ACK时,它将(1)切换到空闲Hello状态,(2)停止RTT检测并清除RTT状态,以及(3)开始发送具有空闲Hello间隔的GRE Tunnel Hello消息(参见第5.2.14节)。

   +-+-+-+-+-+-+-+-+
   |Attribute Type |                    (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |    (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        
   +-+-+-+-+-+-+-+-+
   |Attribute Type |                    (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |    (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        

Attribute Type Switching to Idle Hello State, set to 34.

属性类型切换到空闲Hello状态,设置为34。

Attribute Length Set to 0.

属性长度设置为0。

5.6.15. Tunnel Verification
5.6.15. 隧道验证

The HAAP uses the Tunnel Verification attribute to inform the HG to verify whether an existing LTE GRE tunnel is still functioning. The Tunnel Verification attribute SHOULD be carried in the LTE GRE Tunnel Notify message. It provides a means to detect the tunnel faster than the GRE Tunnel Hello, especially when the LTE GRE tunnel is in the Idle Hello State and it takes a much longer time to detect this tunnel.

HAAP使用隧道验证属性通知HG验证现有LTE GRE隧道是否仍在运行。LTE GRE隧道通知消息中应携带隧道验证属性。它提供了一种比GRE隧道Hello更快地检测隧道的方法,特别是当LTE GRE隧道处于空闲Hello状态并且检测此隧道需要更长的时间时。

When the HAAP receives an LTE GRE Tunnel Setup Request and finds that the requested tunnel conflicts with an existing tunnel, the HAAP initiates tunnel verification. The HAAP drops all conflicting LTE GRE Tunnel Setup Request messages and sends GRE Tunnel Notify messages carrying the Tunnel Verification attribute until the verification ends. The HG MUST respond to the HAAP with the same Tunnel Verification attribute as the ACK if the tunnel is still functioning.

当HAAP接收到LTE GRE隧道设置请求并发现请求的隧道与现有隧道冲突时,HAAP启动隧道验证。HAAP丢弃所有冲突的LTE GRE隧道设置请求消息,并发送带有隧道验证属性的GRE隧道通知消息,直到验证结束。如果通道仍在运行,HG必须使用与ACK相同的通道验证属性响应HAAP。

If the ACK of the Tunnel Verification attribute is received from the HG, the HAAP determines that the existing tunnel is still functioning. An LTE GRE Tunnel Deny message (with Error Code = 8) will be sent to the HG. The HG SHOULD terminate the GRE Tunnel Setup Request process immediately.

如果从HG接收到隧道验证属性的ACK,则HAAP确定现有隧道仍在运行。将向HG发送LTE GRE隧道拒绝消息(错误代码=8)。HG应立即终止GRE隧道设置请求过程。

If the HAAP does not receive a tunnel verification ACK message after three attempts (one initial attempt and two retries), it will regard the existing tunnel as failed, and the LTE GRE Tunnel Setup Request will be accepted.

如果HAAP在三次尝试(一次初始尝试和两次重试)后未接收到隧道验证ACK消息,它将认为现有隧道失败,并且LTE GRE隧道设置请求将被接受。

   +-+-+-+-+-+-+-+-+
   |Attribute Type |                    (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |    (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        
   +-+-+-+-+-+-+-+-+
   |Attribute Type |                    (1 byte)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Attribute Length             |    (2 bytes)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        

Attribute Type Tunnel Verification, set to 35.

属性类型隧道验证,设置为35。

Attribute Length Set to 0.

属性长度设置为0。

6. Tunnel Protocol Operation (Data Plane)
6. 隧道协议操作(数据平面)

GRE tunnels are set up over heterogeneous connections, such as LTE and DSL, between the HG and the HAAP. Users' IP (inner) packets are encapsulated in GRE packets that are in turn carried in IP (outer) packets. The general structure of data packets of the GRE Tunnel Bonding Protocol is shown below.

GRE隧道是在HG和HAAP之间的异构连接(如LTE和DSL)上建立的。用户的IP(内部)数据包被封装在GRE数据包中,而GRE数据包又被封装在IP(外部)数据包中。GRE隧道连接协议的数据包的一般结构如下所示。

                  +--------------------------------+
                  |          Media Header          |
                  +--------------------------------+
                  |         Outer IP Header        |
                  +--------------------------------+
                  |           GRE Header           |
                  +--------------------------------+
                  |         Inner IP Packet        |
                  +--------------------------------+
        
                  +--------------------------------+
                  |          Media Header          |
                  +--------------------------------+
                  |         Outer IP Header        |
                  +--------------------------------+
                  |           GRE Header           |
                  +--------------------------------+
                  |         Inner IP Packet        |
                  +--------------------------------+
        
6.1. The GRE Header
6.1. GRE头球

The GRE header was first standardized in [RFC2784]. [RFC2890] added the optional Key and Sequence Number fields.

GRE标题在[RFC2784]中首次标准化。[RFC2890]添加了可选键和序列号字段。

The Checksum and the Reserved1 fields are not used in the GRE Tunnel Bonding; therefore, the C bit is set to 0.

GRE隧道连接中未使用校验和和和保留字段1;因此,C位被设置为0。

The Key bit is set to 1 so that the Key field is present. The Key field is used as a 32-bit random number. It is generated by the HAAP per bonding connection, and the HG is notified (see Section 5.2.9).

密钥位设置为1,以便存在密钥字段。密钥字段用作32位随机数。它由HAAP每个键合连接生成,并通知HG(见第5.2.9节)。

The S bit is set to 1, and the Sequence Number field is present and used for in-order delivery as per [RFC2890].

根据[RFC2890],S位设置为1,序列号字段存在并用于订单交付。

The Protocol Type field in the GRE header MUST be set to 0x0800 for IPv4 or 0x86DD for IPv6. So, the GRE header used by data packets of the GRE Tunnel Bonding Protocol has the following format:

对于IPv4,GRE标头中的协议类型字段必须设置为0x0800,对于IPv6,必须设置为0x86DD。因此,GRE隧道绑定协议的数据分组使用的GRE报头具有以下格式:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |0| |1|1| Reserved0       | Ver |  Protocol Type 0x0800/86DD    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                              Key                              |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                        Sequence Number                        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        
      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |0| |1|1| Reserved0       | Ver |  Protocol Type 0x0800/86DD    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                              Key                              |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                        Sequence Number                        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        

Figure 3: GRE Header for Data Packets of GRE Tunnel Bonding

图3:GRE隧道绑定数据包的GRE报头

6.2. Automatic Setup of GRE Tunnels
6.2. GRE隧道的自动设置

The HG gets the DSL WAN interface IP address (D) from the Broadband Remote Access Server (BRAS) via the Point-to-Point Protocol over Ethernet (PPPoE) and gets the LTE WAN interface IP address (E) through the Packet Data Protocol (PDP) from the Packet Data Network Gateway (PGW). The domain name of a HAAP group may be configured or obtained via the DSL/LTE WAN interface based on gateway configuration protocols such as [TR-069], where the HAAP group comprises one or multiple HAAPs. The Domain Name System (DNS) resolution of the HAAP group's domain name is requested via the DSL/LTE WAN interface. The DNS server will reply with an anycast HAAP IP address (G), which MAY be pre-configured by the operator.

HG通过以太网点对点协议(PPPoE)从宽带远程接入服务器(BRAS)获取DSL WAN接口IP地址(D),并通过分组数据协议(PDP)从分组数据网络网关(PGW)获取LTE WAN接口IP地址(E)。HAAP组的域名可以基于诸如[TR-069]的网关配置协议经由DSL/LTE WAN接口配置或获得,其中HAAP组包括一个或多个HAAP。通过DSL/LTE WAN接口请求HAAP组域名的域名系统(DNS)解析。DNS服务器将使用选播HAAP IP地址(G)进行回复,该地址可能由运营商预先配置。

After the interface IP addresses have been acquired, the HG starts the following GRE Tunnel Bonding procedure. It is REQUIRED that the HG first set up the LTE GRE tunnel and then set up the DSL GRE tunnel.

获取接口IP地址后,HG开始以下GRE隧道连接程序。要求HG先建立LTE GRE隧道,然后再建立DSL GRE隧道。

The HG sends the GRE Tunnel Setup Request message to the HAAP via the LTE WAN interface. The outer source IP address for this message is the LTE WAN interface IP address (E), while the outer destination IP address is the anycast HAAP IP address (G). The HAAP with the highest priority (e.g., the one that the HG has the least-cost path to reach) in the HAAP group, which receives the GRE Tunnel Setup

HG通过LTE WAN接口向HAAP发送GRE隧道设置请求消息。此消息的外部源IP地址是LTE WAN接口IP地址(E),而外部目标IP地址是选播HAAP IP地址(G)。接收GRE隧道设置的HAAP组中具有最高优先级的HAAP(例如,HG具有最低成本路径的HAAP)

Request message, will initiate the procedure for authentication and authorization, as specified in [TS23.401], to check whether the HG is trusted by the PGW.

请求消息将启动[TS23.401]中规定的身份验证和授权程序,以检查PGW是否信任HG。

If the authentication and authorization succeed, the HAAP sets the LTE WAN interface IP address (E), which is obtained from the GRE Tunnel Setup Request message (i.e., its outer source IP address), as the destination endpoint IP address of the GRE tunnel and replies to the HG's LTE WAN interface with the GRE Tunnel Setup Accept message in which an IP address (H) of the HAAP (e.g., an IP address of a Line Card in the HAAP) and a Session ID randomly generated by the HAAP are carried as attributes. The outer source IP address for this message is the IP address (H) or the anycast HAAP IP address (G), while the outer destination IP address is the LTE WAN interface IP address (E). Otherwise, the HAAP MUST send to the HG's LTE WAN interface the GRE Tunnel Setup Deny message, and the HG MUST terminate the tunnel setup process once it receives the GRE Tunnel Setup Deny message.

如果认证和授权成功,HAAP设置LTE WAN接口IP地址(E),该地址从GRE隧道设置请求消息(即,其外部源IP地址)获得,作为GRE隧道的目的端点IP地址,并使用GRE隧道设置接受消息回复HG的LTE WAN接口,其中携带HAAP的IP地址(H)(例如,HAAP中线路卡的IP地址)和HAAP随机生成的会话ID作为属性。此消息的外部源IP地址是IP地址(H)或选播HAAP IP地址(G),而外部目标IP地址是LTE WAN接口IP地址(E)。否则,HAAP必须向HG的LTE WAN接口发送GRE隧道设置拒绝消息,HG必须在收到GRE隧道设置拒绝消息后终止隧道设置过程。

After the LTE GRE tunnel is successfully set up, the HG will obtain the C address (see Figure 1) over the tunnel from the HAAP through the Dynamic Host Configuration Protocol (DHCP). After that, the HG starts to set up the DSL GRE tunnel. It sends a GRE Tunnel Setup Request message via the DSL WAN interface, carrying the aforementioned Session ID received from the HAAP. The outer source IP address for this message is the DSL WAN interface IP address (D), while the outer destination IP address is the IP address (H) of the HAAP. The HAAP, which receives the GRE Tunnel Setup Request message, will initiate the procedure for authentication and authorization in order to check whether the HG is trusted by the BRAS.

成功设置LTE GRE隧道后,HG将通过动态主机配置协议(DHCP)通过隧道从HAAP获取C地址(见图1)。之后,HG开始建立DSL GRE隧道。它通过DSL WAN接口发送GRE隧道设置请求消息,携带从HAAP接收的前述会话ID。此消息的外部源IP地址是DSL WAN接口IP地址(D),而外部目标IP地址是HAAP的IP地址(H)。接收GRE Tunnel Setup Request(GRE隧道设置请求)消息的HAAP将启动身份验证和授权程序,以检查HG是否受BRA信任。

If the authentication and authorization succeed, the HAAP sets the DSL WAN interface IP address (D), which is obtained from the GRE Tunnel Setup Request message (i.e., its outer source IP address), as the destination endpoint IP address of the GRE tunnel and replies to the HG's DSL WAN interface with the GRE Tunnel Setup Accept message. The outer source IP address for this message is the IP address (H) of the HAAP, while the outer destination IP address is the DSL WAN interface IP address (D). In this way, the two tunnels with the same Session ID can be used to carry traffic from the same user. That is to say, the two tunnels are "bonded" together. Otherwise, if the authentication and authorization fail, the HAAP MUST send to the HG's DSL WAN interface the GRE Tunnel Setup Deny message. Meanwhile, it MUST send to the HG's LTE WAN interface the GRE Tunnel Tear Down message. The HG MUST terminate the tunnel setup process once it receives the GRE Tunnel Setup Deny message and MUST tear down the LTE GRE tunnel that has been set up once it receives the GRE Tunnel Tear Down message.

如果认证和授权成功,HAAP将从GRE隧道设置请求消息(即其外部源IP地址)获得的DSL WAN接口IP地址(D)设置为GRE隧道的目标端点IP地址,并使用GRE隧道设置接受消息回复HG的DSL WAN接口。此消息的外部源IP地址是HAAP的IP地址(H),而外部目标IP地址是DSL WAN接口IP地址(D)。这样,具有相同会话ID的两个隧道可用于承载来自同一用户的流量。也就是说,这两条隧道是“粘合”在一起的。否则,如果身份验证和授权失败,HAAP必须向HG的DSL WAN接口发送GRE Tunnel Setup Deny消息。同时,它必须向HG的LTE WAN接口发送GRE隧道拆除消息。HG必须在接收到GRE tunnel setup Deny(GRE隧道设置拒绝)消息后终止隧道设置过程,并且必须在接收到GRE tunnel down(GRE隧道拆除)消息后拆除已设置的LTE GRE隧道。

7. Security Considerations
7. 安全考虑

Malicious devices controlled by attackers may intercept the control messages sent on the GRE tunnels. Later on, the rogue devices may fake control messages to disrupt the GRE tunnels or attract traffic from the target HG.

攻击者控制的恶意设备可能会截获GRE隧道上发送的控制消息。稍后,流氓设备可能会伪造控制消息,以干扰GRE隧道或吸引来自目标HG的流量。

As a security feature, the Key field of the GRE header of the control messages and the data packets is generated as a 32-bit cleartext password, except for the first GRE Setup Request message per bonding connection sent from the HG to the HAAP, whose Key field is filled with all zeros. The HAAP and the HG validate the Key value and the outer source IP address, and they discard any packets with invalid combinations.

作为安全特性,控制消息和数据包的GRE报头的密钥字段作为32位明文密码生成,除了从HG发送到HAAP的每个绑定连接的第一条GRE设置请求消息,其密钥字段用全零填充。HAAP和HG验证键值和外部源IP地址,并丢弃任何具有无效组合的数据包。

Moreover, GRE over IP Security (IPsec) could be used to enhance security.

此外,greoverip安全性(IPsec)可用于增强安全性。

8. IANA Considerations
8. IANA考虑

IANA need not assign anything for the GRE Tunnel Bonding Protocol. The GRE Protocol Type, the Ethertype for the GRE Channel, is set to 0xB7EA, which is under the control of the IEEE Registration Authority. However, IANA has updated the "IEEE 802 Numbers" IANA web page [802Type], which is of primarily historic interest.

IANA无需为GRE隧道连接协议分配任何内容。GRE协议类型(GRE通道的Ethertype)设置为0xB7EA,由IEEE注册机构控制。然而,IANA已经更新了“IEEE 802编号”IANA网页[802Type],这主要是出于历史原因。

9. References
9. 工具书类
9.1. Normative References
9.1. 规范性引用文件

[Port-NO] IANA, "Service Name and Transport Protocol Port Number Registry", <http://www.iana.org/assignments/ service-names-port-numbers>.

[端口号]IANA,“服务名称和传输协议端口号注册表”<http://www.iana.org/assignments/ 服务名称端口号>。

[Pro-NO] IANA, "Assigned Internet Protocol Numbers", <http://www.iana.org/assignments/protocol-numbers>.

[Pro NO]IANA,“指定的互联网协议编号”<http://www.iana.org/assignments/protocol-numbers>.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <http://www.rfc-editor.org/info/rfc2119>.

[RFC2119]Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,DOI 10.17487/RFC2119,1997年3月<http://www.rfc-editor.org/info/rfc2119>.

[RFC2697] Heinanen, J. and R. Guerin, "A Single Rate Three Color Marker", RFC 2697, DOI 10.17487/RFC2697, September 1999, <http://www.rfc-editor.org/info/rfc2697>.

[RFC2697]Heinanen,J.和R.Guerin,“单速率三色标记”,RFC 2697,DOI 10.17487/RFC2697,1999年9月<http://www.rfc-editor.org/info/rfc2697>.

[RFC2784] Farinacci, D., Li, T., Hanks, S., Meyer, D., and P. Traina, "Generic Routing Encapsulation (GRE)", RFC 2784, DOI 10.17487/RFC2784, March 2000, <http://www.rfc-editor.org/info/rfc2784>.

[RFC2784]Farinaci,D.,Li,T.,Hanks,S.,Meyer,D.,和P.Traina,“通用路由封装(GRE)”,RFC 2784,DOI 10.17487/RFC27842000年3月<http://www.rfc-editor.org/info/rfc2784>.

[RFC2890] Dommety, G., "Key and Sequence Number Extensions to GRE", RFC 2890, DOI 10.17487/RFC2890, September 2000, <http://www.rfc-editor.org/info/rfc2890>.

[RFC2890]Dommety,G.,“GRE的密钥和序列号扩展”,RFC 2890,DOI 10.17487/RFC2890,2000年9月<http://www.rfc-editor.org/info/rfc2890>.

[RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing Architecture", RFC 4291, DOI 10.17487/RFC4291, February 2006, <http://www.rfc-editor.org/info/rfc4291>.

[RFC4291]Hinden,R.和S.Deering,“IP版本6寻址体系结构”,RFC 4291,DOI 10.17487/RFC42912006年2月<http://www.rfc-editor.org/info/rfc4291>.

[RFC4632] Fuller, V. and T. Li, "Classless Inter-domain Routing (CIDR): The Internet Address Assignment and Aggregation Plan", BCP 122, RFC 4632, DOI 10.17487/RFC4632, August 2006, <http://www.rfc-editor.org/info/rfc4632>.

[RFC4632]Fuller,V.和T.Li,“无类域间路由(CIDR):互联网地址分配和聚合计划”,BCP 122,RFC 4632,DOI 10.17487/RFC4632,2006年8月<http://www.rfc-editor.org/info/rfc4632>.

[TR-069] Broadband Forum, "CPE WAN Management Protocol", Issue: 1 Amendment 5, November 2013, <https://www.broadband-forum.org/technical/download/ TR-069_Amendment-5.pdf>.

[TR-069]宽带论坛,“CPE广域网管理协议”,发布日期:2013年11月第5次修正案1<https://www.broadband-forum.org/technical/download/ TR-069_修正案-5.pdf>。

[TS23.401] 3GPP TS23.401, "General Packet Radio Service (GPRS) enhancements for Evolved Universal Terrestrial Radio Access Network (E-UTRAN) access", v11.7.0, September 2013.

[TS23.401]3GPP TS23.401,“通用分组无线业务(GPRS)增强,用于演进通用地面无线接入网(E-UTRAN)接入”,v11.7.012013年9月。

9.2. Informative References
9.2. 资料性引用

[802Type] IANA, "IEEE 802 Numbers", <http://www.iana.org/assignments/ieee-802-numbers>.

[802类型]IANA,“IEEE 802编号”<http://www.iana.org/assignments/ieee-802-numbers>.

[ANSI-X9.31-1998] ANSI Standard X9.31-1998, "Digital Signatures Using Reversible Public Key Cryptography for the Financial Services Industry (rDSA)", 1998.

[ANSI-X9.31-1998]ANSI标准X9.31-1998,“金融服务业(rDSA)使用可逆公钥加密的数字签名”,1998年。

[RFC2724] Handelman, S., Stibler, S., Brownlee, N., and G. Ruth, "RTFM: New Attributes for Traffic Flow Measurement", RFC 2724, DOI 10.17487/RFC2724, October 1999, <http://www.rfc-editor.org/info/rfc2724>.

[RFC2724]Handelman,S.,Stibler,S.,Brownlee,N.,和G.Ruth,“RTFM:交通流测量的新属性”,RFC 2724,DOI 10.17487/RFC2724,1999年10月<http://www.rfc-editor.org/info/rfc2724>.

[RFC6320] Wadhwa, S., Moisand, J., Haag, T., Voigt, N., and T. Taylor, Ed., "Protocol for Access Node Control Mechanism in Broadband Networks", RFC 6320, DOI 10.17487/RFC6320, October 2011, <http://www.rfc-editor.org/info/rfc6320>.

[RFC6320]Wadhwa,S.,Moissand,J.,Haag,T.,Voigt,N.,和T.Taylor,Ed.,“宽带网络中接入节点控制机制的协议”,RFC 6320,DOI 10.17487/RFC6320,2011年10月<http://www.rfc-editor.org/info/rfc6320>.

[RFC6733] Fajardo, V., Ed., Arkko, J., Loughney, J., and G. Zorn, Ed., "Diameter Base Protocol", RFC 6733, DOI 10.17487/RFC6733, October 2012, <http://www.rfc-editor.org/info/rfc6733>.

[RFC6733]Fajardo,V.,Ed.,Arkko,J.,Loughney,J.,和G.Zorn,Ed.,“直径基准协议”,RFC 6733,DOI 10.17487/RFC6733,2012年10月<http://www.rfc-editor.org/info/rfc6733>.

[RFC7031] Mrugalski, T. and K. Kinnear, "DHCPv6 Failover Requirements", RFC 7031, DOI 10.17487/RFC7031, September 2013, <http://www.rfc-editor.org/info/rfc7031>.

[RFC7031]Mrugalski,T.和K.Kinnear,“DHCPv6故障切换要求”,RFC 7031,DOI 10.17487/RFC70312013年9月<http://www.rfc-editor.org/info/rfc7031>.

[RFC7676] Pignataro, C., Bonica, R., and S. Krishnan, "IPv6 Support for Generic Routing Encapsulation (GRE)", RFC 7676, DOI 10.17487/RFC7676, October 2015, <http://www.rfc-editor.org/info/rfc7676>.

[RFC7676]Pignataro,C.,Bonica,R.,和S.Krishnan,“对通用路由封装(GRE)的IPv6支持”,RFC 7676,DOI 10.17487/RFC76762015年10月<http://www.rfc-editor.org/info/rfc7676>.

Contributors

贡献者

Li Xue Individual Email: xueli_jas@163.com

李雪个人邮箱:xueli_jas@163.com

Zhongwen Jiang Huawei Technologies Email: jiangzhongwen@huawei.com

中文江华为技术电子邮件:jiangzhongwen@huawei.com

Authors' Addresses

作者地址

Nicolai Leymann Deutsche Telekom AG Winterfeldtstrasse 21-27 Berlin 10781 Germany Phone: +49-170-2275345 Email: n.leymann@telekom.de

Nicolai Leymann Deutsche Telekom AG Winterfeldtstrasse 21-27柏林10781德国电话:+49-170-2275345电子邮件:n。leymann@telekom.de

Cornelius Heidemann Deutsche Telekom AG Heinrich-Hertz-Strasse 3-7 Darmstadt 64295 Germany Phone: +49-6151-5812721 Email: heidemannc@telekom.de

科尼利厄斯·海德曼德国电信公司海因里希·赫兹大街3-7号达姆施塔特64295德国电话:+49-6151-5812721电子邮件:heidemannc@telekom.de

Mingui Zhang Huawei Technologies No. 156 Beiqing Rd. Haidian District Beijing 100095 China Email: zhangmingui@huawei.com

北京市海淀区北青路156号华为技术有限公司张明贵100095中国电子邮件:zhangmingui@huawei.com

Behcet Sarikaya Huawei USA 5340 Legacy Dr. Building 3 Plano, TX 75024 United States of America Email: sarikaya@ieee.org

Behcet Sarikaya华为美国5340 Legacy Dr.Building 3 Plano,TX 75024美国电子邮件:sarikaya@ieee.org

Margaret Cullen Painless Security 14 Summer St. Suite 202 Malden, MA 02148 United States of America Email: margaret@painless-security.com

Margaret Cullen无痛安全14 Summer St.Suite 202 Malden,马萨诸塞州02148美利坚合众国电子邮件:margaret@painless-安全网